美文网首页
Python学习之深入(二)

Python学习之深入(二)

作者: 酱油戊 | 来源:发表于2017-11-30 17:06 被阅读0次

    姓名:何承勇

    学号:16050510005

    转载自:http://www.cnblogs.com/vamei/archive/2012/09/13/2682778.html,有删改

    【嵌牛导读】:Python一切皆对象,但同时,Python还是一个多范式语言(multi-paradigm),你不仅可以使用面向对象的方式来编写程序,还可以用面向过程的方式来编写相同功能的程序(还有函数式、声明式等,我们暂不深入)。

    本文主要讲述Python的闭包和装饰器等内容。

    【嵌牛鼻子】:Python、高级语法

    【嵌牛提问】:Python高级语法里的装饰器是什么?闭包又与我们离散数学中学得的概念有何差异?

    【嵌牛正文】:

    闭包(closure)是函数式编程的重要的语法结构。函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式)。在面向过程编程中,我们见到过函数(function);在面向对象编程中,我们见过对象(object)。函数和对象的根本目的是以某种逻辑方式组织代码,并提高代码的可重复使用性(reusability)。闭包也是一种组织代码的结构,它同样提高了代码的可重复使用性。

    不同的语言实现闭包的方式不同。Python以函数对象为基础,为闭包这一语法结构提供支持的 (我们在特殊方法与多范式中,已经多次看到Python使用对象来实现一些特殊的语法)。Python一切皆对象,函数这一语法结构也是一个对象。在函数对象中,我们像使用一个普通对象一样使用函数对象,比如更改函数对象的名字,或者将函数对象作为参数进行传递。

    函数对象的作用域

    和其他对象一样,函数对象也有其存活的范围,也就是函数对象的作用域。函数对象是使用def语句定义的,函数对象的作用域与def所在的层级相同。比如下面代码,我们在line_conf函数的隶属范围内定义的函数line,就只能在line_conf的隶属范围内调用。

    line函数定义了一条直线(y = 2x + 1)。可以看到,在line_conf()中可以调用line函数,而在作用域之外调用line将会有下面的错误:

    说明这时已经在作用域之外。

    同样,如果使用lambda定义函数,那么函数对象的作用域与lambda所在的层级相同。

    闭包

    函数是一个对象,所以可以作为某个函数的返回结果

    上面的代码可以成功运行。line_conf的返回结果被赋给line对象。上面的代码将打印11。

    如果line()的定义中引用了外部的变量,会发生什么呢?

    我们可以看到,line定义的隶属程序块中引用了高层级的变量b,但b信息存在于line的定义之外 (b的定义并不在line的隶属程序块中)。我们称b为line的环境变量。事实上,line作为line_conf的返回值时,line中已经包括b的取值(尽管b并不隶属于line)。

    上面的代码将打印25,也就是说,line所参照的b值是函数对象定义时可供参考的b值,而不是使用时的b值。

    一个函数和它的环境变量合在一起,就构成了一个闭包(closure)。在Python中,所谓的闭包是一个包含有环境变量取值的函数对象。环境变量取值被保存在函数对象的__closure__属性中。比如下面的代码:

    __closure__里包含了一个元组(tuple)。这个元组中的每个元素是cell类型的对象。我们看到第一个cell包含的就是整数15,也就是我们创建闭包时的环境变量b的取值。

    下面看一个闭包的实际例子:

    这个例子中,函数line与环境变量a,b构成闭包。在创建闭包的时候,我们通过line_conf的参数a,b说明了这两个环境变量的取值,这样,我们就确定了函数的最终形式(y = x + 1和y = 4x + 5)。我们只需要变换参数a,b,就可以获得不同的直线表达函数。由此,我们可以看到,闭包也具有提高代码可复用性的作用。

    如果没有闭包,我们需要每次创建直线函数的时候同时说明a,b,x。这样,我们就需要更多的参数传递,也减少了代码的可移植性。利用闭包,我们实际上创建了泛函。line函数定义一种广泛意义的函数。这个函数的一些方面已经确定(必须是直线),但另一些方面(比如a和b参数待定)。随后,我们根据line_conf传递来的参数,通过闭包的形式,将最终函数确定下来。

    闭包与并行运算

    闭包有效的减少了函数所需定义的参数数目。这对于并行运算来说有重要的意义。在并行运算的环境下,我们可以让每台电脑负责一个函数,然后将一台电脑的输出和下一台电脑的输入串联起来。最终,我们像流水线一样工作,从串联的电脑集群一端输入数据,从另一端输出数据。这样的情境最适合只有一个参数输入的函数。闭包就可以实现这一目的。

    并行运算正称为一个热点。这也是函数式编程又热起来的一个重要原因。函数式编程早在1950年代就已经存在,但应用并不广泛。然而,我们上面描述的流水线式的工作并行集群过程,正适合函数式编程。由于函数式编程这一天然优势,越来越多的语言也开始加入对函数式编程范式的支持。

    装饰器(decorator)是一种高级Python语法。装饰器可以对一个函数、方法或者类进行加工。在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果。相对于其它方式,装饰器语法简单,代码可读性高。因此,装饰器在Python项目中有广泛的应用。

    装饰器最早在Python 2.5中出现,它最初被用于加工函数和方法这样的可调用对象(callable object,这样的对象定义有__call__方法)。在Python 2.6以及之后的Python版本中,装饰器被进一步用于加工类。

    装饰函数和方法

    我们先定义两个简单的数学函数,一个用来计算平方和,一个用来计算平方差:

    在拥有了基本的数学功能之后,我们可能想为函数增加其它的功能,比如打印输入。我们可以改写函数来实现这一点:

    我们修改了函数的定义,为函数增加了功能。

    现在,我们使用装饰器来实现上述修改:

    装饰器可以用def的形式定义,如上面代码中的decorator。装饰器接收一个可调用对象作为输入参数,并返回一个新的可调用对象。装饰器新建了一个可调用对象,也就是上面的new_F。new_F中,我们增加了打印的功能,并通过调用F(a, b)来实现原有函数的功能。

    定义好装饰器后,我们就可以通过@语法使用了。在函数square_sum和square_diff定义之前调用@decorator,我们实际上将square_sum或square_diff传递给decorator,并将decorator返回的新的可调用对象赋给原来的函数名(square_sum或square_diff)。 所以,当我们调用square_sum(3, 4)的时候,就相当于:

    我们知道,Python中的变量名和对象是分离的。变量名可以指向任意一个对象。从本质上,装饰器起到的就是这样一个重新指向变量名的作用(name binding),让同一个变量名指向一个新返回的可调用对象,从而达到修改可调用对象的目的。

    与加工函数类似,我们可以使用装饰器加工类的方法。

    如果我们有其他的类似函数,我们可以继续调用decorator来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。

    含参的装饰器

    在上面的装饰器调用中,比如@decorator,该装饰器默认它后面的函数是唯一的参数。装饰器的语法允许我们调用decorator时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。

    上面的pre_str是允许参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有环境参量的闭包。当我们使用@pre_str('^_^')调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。该调用相当于:

    装饰类

    在上面的例子中,装饰器接收一个函数,并返回一个函数,从而起到加工函数的效果。在Python 2.6以后,装饰器被拓展到类。一个装饰器可以接收一个类,并返回一个类,从而起到加工类的效果。

    在decorator中,我们返回了一个新类newClass。在新类中,我们记录了原来类生成的对象(self.wrapped),并附加了新的属性total_display,用于记录调用display的次数。我们也同时更改了display方法。

    通过修改,我们的Bird类可以显示调用display的次数了。

    总结:

    装饰器的核心作用是name binding。这种语法是Python多编程范式的又一个体现。大部分Python用户都不怎么需要定义装饰器,但有可能会使用装饰器。鉴于装饰器在Python项目中的广泛使用,了解这一语法是非常有益的。

    原文作者:Vamei

    相关文章

      网友评论

          本文标题:Python学习之深入(二)

          本文链接:https://www.haomeiwen.com/subject/chavbxtx.html