美文网首页Spark深入学习
【Spark Java API】Transformation(4

【Spark Java API】Transformation(4

作者: 小飞_侠_kobe | 来源:发表于2016-02-03 19:15 被阅读651次

    coalesce


    官方文档描述:

    Return a new RDD that is reduced into `numPartitions` partitions.
    

    函数原型:

    def coalesce(numPartitions: Int): JavaRDD[T]
    
    def coalesce(numPartitions: Int, shuffle: Boolean): JavaRDD[T]
    

    源码分析:

    def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null)    : RDD[T] = withScope {  
    if (shuffle) {    
    /** Distributes elements evenly across output partitions, starting from a random partition. */    
    val distributePartition = (index: Int, items: Iterator[T]) => {      
      var position = (new Random(index)).nextInt(numPartitions)      
      items.map { t =>        
      // Note that the hash code of the key will just be the key itself. The HashPartitioner        
      // will mod it with the number of total partitions.        
      position = position + 1        
      (position, t)      
     }    
    } : Iterator[(Int, T)]    
    // include a shuffle step so that our upstream tasks are still distributed    
    new CoalescedRDD(
      new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition),      
      new HashPartitioner(numPartitions)),      
      numPartitions).values  
      } else {    
        new CoalescedRDD(this, numPartitions)  
     }
    }
    

    **
    从源码中可以看出,当shuffle=false时,由于不进行shuffle,问题就变成parent RDD中哪些partition可以合并在一起,合并的过程依据设置的numPartitons中的元素个数进行合并处理。
    当shuffle=true时,进行shuffle操作,原理很简单,先是对partition中record进行k-v转换,其中key是由 (new Random(index)).nextInt(numPartitions)+1计算得到,value为record,index 是该 partition 的索引,numPartitions 是 CoalescedRDD 中的 partition 个数,然后 shuffle 后得到 ShuffledRDD, 可以得到均分的 records,再经过复杂算法来建立 ShuffledRDD 和 CoalescedRDD 之间的数据联系,最后过滤掉 key,得到 coalesce 后的结果 MappedRDD。
    **

    实例:

    List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
    JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);
    // shuffle默认是false
    JavaRDD<Integer> coalesceRDD = javaRDD.coalesce(2);   
    System.out.println(coalesceRDD);
    
    JavaRDD<Integer> coalesceRDD1 = javaRDD.coalesce(2,true);
    System.out.println(coalesceRDD1);
    

    注意:

    **
    coalesce() 可以将 parent RDD 的 partition 个数进行调整,比如从 5 个减少到 3 个,或者从 5 个增加到 10 个。需要注意的是当 shuffle = false 的时候,是不能增加 partition 个数的(即不能从 5 个变为 10 个)。
    **

    repartition


    官网文档描述:

    Return a new RDD that has exactly numPartitions partitions.
    Can increase or decrease the level of parallelism in this RDD. 
    Internally, this uses a shuffle to redistribute data.
    If you are decreasing the number of partitions in this RDD, consider using `coalesce`,which can avoid performing a shuffle.
    

    **
    特别需要说明的是,如果使用repartition对RDD的partition数目进行缩减操作,可以使用coalesce函数,将shuffle设置为false,避免shuffle过程,提高效率。
    **

    函数原型:

    def repartition(numPartitions: Int): JavaRDD[T]
    

    源码分析:

    def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {  
       coalesce(numPartitions, shuffle = true)
    }
    

    **
    从源码中可以看到repartition等价于 coalesce(numPartitions, shuffle = true)
    **

    实例:

    List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
    JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);
    //等价于 coalesce(numPartitions, shuffle = true)
    JavaRDD<Integer> repartitionRDD = javaRDD.repartition(2);
    System.out.println(repartitionRDD);
    

    相关文章

      网友评论

        本文标题:【Spark Java API】Transformation(4

        本文链接:https://www.haomeiwen.com/subject/ckrekttx.html