本节将展示使用kafka作为Flink的数据来源,该例子也是一个Flink流处理的demo。
1、前提约束
- 已安装kafka
https://www.jianshu.com/p/1a7b9970d073
假设kafka所在的服务器的ip为192.168.100.141,且已关闭防火墙。
kafka的安装目录为:/root/kafka_2.11-2.2.1
zookeeper的安装目录为:/root/zookeeper-3.4.11
2 操作
- 1 在idea中创建一个maven项目
- 2 修改该maven项目的pom.xml中的依赖
<dependencies>
<dependency>
<!--spark依赖-->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<!--scala依赖-->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.8</version>
</dependency>
<!--storm依赖-->
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>log4j-over-slf4j</artifactId>
</exclusion>
</exclusions>
<version>1.2.1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-core -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-core</artifactId>
<version>1.5.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.5.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.5.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>1.5.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.10_2.11</artifactId>
<version>1.5.0</version>
</dependency>
</dependencies>
- 在项目的src/main/java文件夹下创建KafkaToFlink.java
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.util.Collector;
import java.util.Properties;
public class KafkaToFlink {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(5000);
Properties properties = new Properties();
properties.put("bootstrap.servers", "192.168.100.141:9092");
properties.put("zookeeper.connect", "192.168.100.141:2181");
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("group.id", "kf");
FlinkKafkaConsumer010<String> myConsumer = new FlinkKafkaConsumer010<String>("kafka-flink", new SimpleStringSchema(),
properties);
DataStream<String> dataStream = env.addSource(myConsumer);
DataStream<WordWithCount> windowCounts = dataStream.rebalance().flatMap(new FlatMapFunction<String, WordWithCount>() {
public void flatMap(String value, Collector<WordWithCount> out) {
System.out.println("接收到kafka数据:" + value);
for (String word : value.split("\\s")) {
out.collect(new WordWithCount(word, 1L));
}
}
}).keyBy("word")
.timeWindow(Time.seconds(2))
.reduce(new ReduceFunction<WordWithCount>() {
public WordWithCount reduce(WordWithCount a, WordWithCount b) {
return new WordWithCount(a.word, a.count + b.count);
}
});
windowCounts.print().setParallelism(1);
env.execute("KafkaToFlink");
}
public static class WordWithCount {
public String word;
public long count;
public WordWithCount() {
}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return word + " : " + count;
}
}
}
- 在192.168.100.141中执行以下命令:
# 启动zookeeper
cd /root/zookeeper-3.4.11/bin
./zkServer.sh start
# 启动kafka
cd /root/kafka_2.11-2.2.1
bin/kafka-server-start.sh config/server.properties
# 创建topic
bin/kafka-topics.sh --create --bootstrap-server 192.168.100.141:9092 --replication-factor 1 --partitions 1 --topic kafka-flink
# 启动生产者
bin/kafka-console-producer.sh --broker-list 192.168.100.141:9092 --topic kafka-flink
- 测试
启动KafkaToFlink.java中的main方法,在kafka的生产者命令行中连续输入字符串,则在main方法启动的命令行中就能看到词频统计的结果。
以上就是kafka作为Flink的数据源完成词频统计的演示。
网友评论