import numpy as np
import matplotlib.pyplot as plt
DATA_FILE = "boston_housing.csv"
BATCH_SIZE = 10
NUM_FEATURES = 14
#归一化
def nolmalize(X):
mean = np.mean(X)
std = np.std(X) #矩阵标准差
X = (X-mean)/std
return X
#线性回归#非线性回归
x_data=np.linspace(-1,1,1000)[:,None]
noise=np.random.normal(0,0.01,x_data.shape)#生成干扰,形状和x_data一样
y_data =(x_data)+noise
y_data1 = np.square(x_data)+noise
print(x_data.shape)
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])
weight = tf.Variable(tf.random_normal([1,1]))
bias = tf.Variable(tf.random_normal([1,1]))
prediction = tf.matmul(x,weight)+bias
loss = tf.reduce_mean(tf.square(y-prediction))
train = tf.train.AdagradOptimizer(0.01).minimize(loss)
weight1 = tf.Variable(tf.random_normal([1,5]))
bias1 = tf.Variable(tf.random_normal([1,5]))
prediction1 = tf.nn.tanh(tf.matmul(x,weight1)+bias1)
weight2 = tf.Variable(tf.random_normal([5,1]))
bias2 = tf.Variable(tf.random_normal([1,1]))
prediction2 = tf.nn.tanh(tf.matmul(prediction1,weight2)+bias2)
loss1 = tf.reduce_mean(tf.square(y-prediction2))
train1 = tf.train.AdagradOptimizer(0.01).minimize(loss1)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for i in range(10000):
if i%100==0:
print(i)
sess.run(train,feed_dict={x:x_data,y:y_data})
sess.run(train1,feed_dict={x:x_data,y:y_data1})
prediction_value=sess.run(prediction,feed_dict={x:x_data})
prediction_value1=sess.run(prediction2,feed_dict={x:x_data})
plt.figure()
plt.scatter(x_data,y_data)
plt.plot(x_data,prediction_value,'r')
plt.show()
plt.figure()
plt.scatter(x_data,y_data1)
plt.plot(x_data,prediction_value1,'r')
plt.show()
网友评论