美文网首页人工智能
[深度学习框架]PyTorch常用代码段

[深度学习框架]PyTorch常用代码段

作者: 顾子豪 | 来源:发表于2020-10-13 10:53 被阅读0次

    转载侵删
    PyTorch最好的资料是官方文档。本文是PyTorch常用代码段,在参考资料[1](张皓:PyTorch Cookbook)的基础上做了一些修补,方便使用时查阅。

    1. 基本配置

    导入包和版本查询

    import torch
    import torch.nn as nn
    import torchvision
    print(torch.__version__)
    print(torch.version.cuda)
    print(torch.backends.cudnn.version())
    print(torch.cuda.get_device_name(0))
    

    可复现性

    在硬件设备(CPU、GPU)不同时,完全的可复现性无法保证,即使随机种子相同。但是,在同一个设备上,应该保证可复现性。具体做法是,在程序开始的时候固定torch的随机种子,同时也把numpy的随机种子固定。

    np.random.seed(0)
    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)
    
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    

    显卡设置

    如果只需要一张显卡

    # Device configuration
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    

    如果需要指定多张显卡,比如0,1号显卡。

    import os
    os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
    

    也可以在命令行运行代码时设置显卡:

    CUDA_VISIBLE_DEVICES=0,1 python train.py
    

    清除显存

    torch.cuda.empty_cache()
    

    也可以使用在命令行重置GPU的指令

    nvidia-smi --gpu-reset -i [gpu_id]
    

    2. 张量(Tensor)处理

    张量的数据类型

    PyTorch有9种CPU张量类型和9种GPU张量类型。

    image

    张量基本信息

    tensor = torch.randn(3,4,5)
    print(tensor.type())  # 数据类型
    print(tensor.size())  # 张量的shape,是个元组
    print(tensor.dim())   # 维度的数量
    

    命名张量

    张量命名是一个非常有用的方法,这样可以方便地使用维度的名字来做索引或其他操作,大大提高了可读性、易用性,防止出错。

    # 在PyTorch 1.3之前,需要使用注释
    # Tensor[N, C, H, W]
    images = torch.randn(32, 3, 56, 56)
    images.sum(dim=1)
    images.select(dim=1, index=0)
    
    # PyTorch 1.3之后
    NCHW = [‘N’, ‘C’, ‘H’, ‘W’]
    images = torch.randn(32, 3, 56, 56, names=NCHW)
    images.sum('C')
    images.select('C', index=0)
    # 也可以这么设置
    tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))
    # 使用align_to可以对维度方便地排序
    tensor = tensor.align_to('N', 'C', 'H', 'W')
    

    数据类型转换

    # 设置默认类型,pytorch中的FloatTensor远远快于DoubleTensor
    torch.set_default_tensor_type(torch.FloatTensor)
    
    # 类型转换
    tensor = tensor.cuda()
    tensor = tensor.cpu()
    tensor = tensor.float()
    tensor = tensor.long()
    

    torch.Tensor与np.ndarray转换

    除了CharTensor,其他所有CPU上的张量都支持转换为numpy格式然后再转换回来。

    ndarray = tensor.cpu().numpy()
    tensor = torch.from_numpy(ndarray).float()
    tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.
    

    Torch.tensor与PIL.Image转换

    # pytorch中的张量默认采用[N, C, H, W]的顺序,并且数据范围在[0,1],需要进行转置和规范化
    # torch.Tensor -> PIL.Image
    image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())
    image = torchvision.transforms.functional.to_pil_image(tensor)  # Equivalently way
    
    # PIL.Image -> torch.Tensor
    path = r'./figure.jpg'
    tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255
    tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way
    

    np.ndarray与PIL.Image的转换

    image = PIL.Image.fromarray(ndarray.astype(np.uint8))
    
    ndarray = np.asarray(PIL.Image.open(path))
    

    从只包含一个元素的张量中提取值

    value = torch.rand(1).item()
    

    张量形变

    # 在将卷积层输入全连接层的情况下通常需要对张量做形变处理,
    # 相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。
    tensor = torch.rand(2,3,4)
    shape = (6, 4)
    tensor = torch.reshape(tensor, shape)
    

    打乱顺序

    tensor = tensor[torch.randperm(tensor.size(0))]  # 打乱第一个维度
    

    水平翻转

    # pytorch不支持tensor[::-1]这样的负步长操作,水平翻转可以通过张量索引实现
    # 假设张量的维度为[N, D, H, W].
    tensor = tensor[:,:,:,torch.arange(tensor.size(3) - 1, -1, -1).long()]
    

    复制张量

    # Operation                 |  New/Shared memory | Still in computation graph |
    tensor.clone()            # |        New         |          Yes               |
    tensor.detach()           # |      Shared        |          No                |
    tensor.detach.clone()()   # |        New         |          No                |
    

    张量拼接

    '''
    注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,
    而torch.stack会新增一维。例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量,
    而torch.stack的结果是3x10x5的张量。
    '''
    tensor = torch.cat(list_of_tensors, dim=0)
    tensor = torch.stack(list_of_tensors, dim=0)
    

    将整数标签转为one-hot编码

    # pytorch的标记默认从0开始
    tensor = torch.tensor([0, 2, 1, 3])
    N = tensor.size(0)
    num_classes = 4
    one_hot = torch.zeros(N, num_classes).long()
    one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())
    

    得到非零元素

    torch.nonzero(tensor)               # index of non-zero elements
    torch.nonzero(tensor==0)            # index of zero elements
    torch.nonzero(tensor).size(0)       # number of non-zero elements
    torch.nonzero(tensor == 0).size(0)  # number of zero elements
    

    判断两个张量相等

    torch.allclose(tensor1, tensor2)  # float tensor
    torch.equal(tensor1, tensor2)     # int tensor
    

    张量扩展

    # Expand tensor of shape 64*512 to shape 64*512*7*7.
    tensor = torch.rand(64,512)
    torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)
    

    矩阵乘法

    # Matrix multiplcation: (m*n) * (n*p) * -> (m*p).
    result = torch.mm(tensor1, tensor2)
    
    # Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)
    result = torch.bmm(tensor1, tensor2)
    
    # Element-wise multiplication.
    result = tensor1 * tensor2
    

    计算两组数据之间的两两欧式距离

    利用broadcast机制

    dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))
    

    3. 模型定义和操作

    一个简单两层卷积网络的示例

    # convolutional neural network (2 convolutional layers)
    class ConvNet(nn.Module):
        def __init__(self, num_classes=10):
            super(ConvNet, self).__init__()
            self.layer1 = nn.Sequential(
                nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
                nn.BatchNorm2d(16),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2, stride=2))
            self.layer2 = nn.Sequential(
                nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
                nn.BatchNorm2d(32),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2, stride=2))
            self.fc = nn.Linear(7*7*32, num_classes)
    
        def forward(self, x):
            out = self.layer1(x)
            out = self.layer2(out)
            out = out.reshape(out.size(0), -1)
            out = self.fc(out)
            return out
    
    model = ConvNet(num_classes).to(device)
    

    卷积层的计算和展示可以用这个网站辅助。

    双线性汇合(bilinear pooling)

    X = torch.reshape(N, D, H * W)                        # Assume X has shape N*D*H*W
    X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W)  # Bilinear pooling
    assert X.size() == (N, D, D)
    X = torch.reshape(X, (N, D * D))
    X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)   # Signed-sqrt normalization
    X = torch.nn.functional.normalize(X)                  # L2 normalization
    

    多卡同步 BN(Batch normalization)

    当使用 torch.nn.DataParallel 将代码运行在多张 GPU 卡上时,PyTorch 的 BN 层默认操作是各卡上数据独立地计算均值和标准差,同步 BN 使用所有卡上的数据一起计算 BN 层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。

    sync_bn = torch.nn.SyncBatchNorm(num_features, eps=1e-05, momentum=0.1, affine=True, 
                                     track_running_stats=True)
    

    将已有网络的所有BN层改为同步BN层

    def convertBNtoSyncBN(module, process_group=None):
        '''Recursively replace all BN layers to SyncBN layer.
    
        Args:
            module[torch.nn.Module]. Network
        '''
        if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
            sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum, 
                                             module.affine, module.track_running_stats, process_group)
            sync_bn.running_mean = module.running_mean
            sync_bn.running_var = module.running_var
            if module.affine:
                sync_bn.weight = module.weight.clone().detach()
                sync_bn.bias = module.bias.clone().detach()
            return sync_bn
        else:
            for name, child_module in module.named_children():
                setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))
            return module
    

    类似 BN 滑动平均

    如果要实现类似 BN 滑动平均的操作,在 forward 函数中要使用原地(inplace)操作给滑动平均赋值。

    class BN(torch.nn.Module)
        def __init__(self):
            ...
            self.register_buffer('running_mean', torch.zeros(num_features))
    
        def forward(self, X):
            ...
            self.running_mean += momentum * (current - self.running_mean)
    

    计算模型整体参数量

    num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())
    

    查看网络中的参数

    可以通过model.state_dict()或者model.named_parameters()函数查看现在的全部可训练参数(包括通过继承得到的父类中的参数)

    params = list(model.named_parameters())
    (name, param) = params[28]
    print(name)
    print(param.grad)
    print('-------------------------------------------------')
    (name2, param2) = params[29]
    print(name2)
    print(param2.grad)
    print('----------------------------------------------------')
    (name1, param1) = params[30]
    print(name1)
    print(param1.grad)
    

    模型可视化(使用pytorchviz)

    szagoruyko/pytorchviz​github.com

    图标

    类似 Keras 的 model.summary() 输出模型信息(使用pytorch-summary

    sksq96/pytorch-summary​github.com

    图标

    模型权重初始化

    注意 model.modules() 和 model.children() 的区别:model.modules() 会迭代地遍历模型的所有子层,而 model.children() 只会遍历模型下的一层。

    # Common practise for initialization.
    for layer in model.modules():
        if isinstance(layer, torch.nn.Conv2d):
            torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',
                                          nonlinearity='relu')
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, val=0.0)
        elif isinstance(layer, torch.nn.BatchNorm2d):
            torch.nn.init.constant_(layer.weight, val=1.0)
            torch.nn.init.constant_(layer.bias, val=0.0)
        elif isinstance(layer, torch.nn.Linear):
            torch.nn.init.xavier_normal_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, val=0.0)
    
    # Initialization with given tensor.
    layer.weight = torch.nn.Parameter(tensor)
    

    提取模型中的某一层

    modules()会返回模型中所有模块的迭代器,它能够访问到最内层,比如self.layer1.conv1这个模块,还有一个与它们相对应的是name_children()属性以及named_modules(),这两个不仅会返回模块的迭代器,还会返回网络层的名字。

    # 取模型中的前两层
    new_model = nn.Sequential(*list(model.children())[:2] 
    # 如果希望提取出模型中的所有卷积层,可以像下面这样操作:
    for layer in model.named_modules():
        if isinstance(layer[1],nn.Conv2d):
             conv_model.add_module(layer[0],layer[1])
    

    部分层使用预训练模型

    注意如果保存的模型是 torch.nn.DataParallel,则当前的模型也需要是

    model.load_state_dict(torch.load('model.pth'), strict=False)
    

    将在 GPU 保存的模型加载到 CPU

    model.load_state_dict(torch.load('model.pth', map_location='cpu'))
    

    导入另一个模型的相同部分到新的模型

    模型导入参数时,如果两个模型结构不一致,则直接导入参数会报错。用下面方法可以把另一个模型的相同的部分导入到新的模型中。

    # model_new代表新的模型
    # model_saved代表其他模型,比如用torch.load导入的已保存的模型
    model_new_dict = model_new.state_dict()
    model_common_dict = {k:v for k, v in model_saved.items() if k in model_new_dict.keys()}
    model_new_dict.update(model_common_dict)
    model_new.load_state_dict(model_new_dict)
    

    4. 数据处理

    计算数据集的均值和标准差

    import os
    import cv2
    import numpy as np
    from torch.utils.data import Dataset
    from PIL import Image
    
    def compute_mean_and_std(dataset):
        # 输入PyTorch的dataset,输出均值和标准差
        mean_r = 0
        mean_g = 0
        mean_b = 0
    
        for img, _ in dataset:
            img = np.asarray(img) # change PIL Image to numpy array
            mean_b += np.mean(img[:, :, 0])
            mean_g += np.mean(img[:, :, 1])
            mean_r += np.mean(img[:, :, 2])
    
        mean_b /= len(dataset)
        mean_g /= len(dataset)
        mean_r /= len(dataset)
    
        diff_r = 0
        diff_g = 0
        diff_b = 0
    
        N = 0
    
        for img, _ in dataset:
            img = np.asarray(img)
    
            diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2))
            diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2))
            diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2))
    
            N += np.prod(img[:, :, 0].shape)
    
        std_b = np.sqrt(diff_b / N)
        std_g = np.sqrt(diff_g / N)
        std_r = np.sqrt(diff_r / N)
    
        mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0)
        std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0)
        return mean, std
    

    得到视频数据基本信息

    import cv2
    video = cv2.VideoCapture(mp4_path)
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = int(video.get(cv2.CAP_PROP_FPS))
    video.release()
    

    TSN 每段(segment)采样一帧视频

    K = self._num_segments
    if is_train:
        if num_frames > K:
            # Random index for each segment.
            frame_indices = torch.randint(
                high=num_frames // K, size=(K,), dtype=torch.long)
            frame_indices += num_frames // K * torch.arange(K)
        else:
            frame_indices = torch.randint(
                high=num_frames, size=(K - num_frames,), dtype=torch.long)
            frame_indices = torch.sort(torch.cat((
                torch.arange(num_frames), frame_indices)))[0]
    else:
        if num_frames > K:
            # Middle index for each segment.
            frame_indices = num_frames / K // 2
            frame_indices += num_frames // K * torch.arange(K)
        else:
            frame_indices = torch.sort(torch.cat((                              
                torch.arange(num_frames), torch.arange(K - num_frames))))[0]
    assert frame_indices.size() == (K,)
    return [frame_indices[i] for i in range(K)]
    

    常用训练和验证数据预处理

    其中 ToTensor 操作会将 PIL.Image 或形状为 H×W×D,数值范围为 [0, 255] 的 np.ndarray 转换为形状为 D×H×W,数值范围为 [0.0, 1.0] 的 torch.Tensor。

    train_transform = torchvision.transforms.Compose([
        torchvision.transforms.RandomResizedCrop(size=224,
                                                 scale=(0.08, 1.0)),
        torchvision.transforms.RandomHorizontalFlip(),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                         std=(0.229, 0.224, 0.225)),
     ])
     val_transform = torchvision.transforms.Compose([
        torchvision.transforms.Resize(256),
        torchvision.transforms.CenterCrop(224),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                         std=(0.229, 0.224, 0.225)),
    ])
    

    5. 模型训练和测试

    分类模型训练代码

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
    # Train the model
    total_step = len(train_loader)
    for epoch in range(num_epochs):
        for i ,(images, labels) in enumerate(train_loader):
            images = images.to(device)
            labels = labels.to(device)
    
            # Forward pass
            outputs = model(images)
            loss = criterion(outputs, labels)
    
            # Backward and optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
            if (i+1) % 100 == 0:
                print('Epoch: [{}/{}], Step: [{}/{}], Loss: {}'
                      .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
    

    分类模型测试代码

    # Test the model
    model.eval()  # eval mode(batch norm uses moving mean/variance 
                  #instead of mini-batch mean/variance)
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
        print('Test accuracy of the model on the 10000 test images: {} %'
              .format(100 * correct / total))
    

    自定义loss

    继承torch.nn.Module类写自己的loss。

    class MyLoss(torch.nn.Moudle):
        def __init__(self):
            super(MyLoss, self).__init__()
    
        def forward(self, x, y):
            loss = torch.mean((x - y) ** 2)
            return loss
    

    标签平滑(label smoothing)

    写一个label_smoothing.py的文件,然后在训练代码里引用,用LSR代替交叉熵损失即可。label_smoothing.py内容如下:

    import torch
    import torch.nn as nn
    
    class LSR(nn.Module):
    
        def __init__(self, e=0.1, reduction='mean'):
            super().__init__()
    
            self.log_softmax = nn.LogSoftmax(dim=1)
            self.e = e
            self.reduction = reduction
    
        def _one_hot(self, labels, classes, value=1):
            """
                Convert labels to one hot vectors
    
            Args:
                labels: torch tensor in format [label1, label2, label3, ...]
                classes: int, number of classes
                value: label value in one hot vector, default to 1
    
            Returns:
                return one hot format labels in shape [batchsize, classes]
            """
    
            one_hot = torch.zeros(labels.size(0), classes)
    
            #labels and value_added  size must match
            labels = labels.view(labels.size(0), -1)
            value_added = torch.Tensor(labels.size(0), 1).fill_(value)
    
            value_added = value_added.to(labels.device)
            one_hot = one_hot.to(labels.device)
    
            one_hot.scatter_add_(1, labels, value_added)
    
            return one_hot
    
        def _smooth_label(self, target, length, smooth_factor):
            """convert targets to one-hot format, and smooth
            them.
            Args:
                target: target in form with [label1, label2, label_batchsize]
                length: length of one-hot format(number of classes)
                smooth_factor: smooth factor for label smooth
    
            Returns:
                smoothed labels in one hot format
            """
            one_hot = self._one_hot(target, length, value=1 - smooth_factor)
            one_hot += smooth_factor / (length - 1)
    
            return one_hot.to(target.device)
    
        def forward(self, x, target):
    
            if x.size(0) != target.size(0):
                raise ValueError('Expected input batchsize ({}) to match target batch_size({})'
                        .format(x.size(0), target.size(0)))
    
            if x.dim() < 2:
                raise ValueError('Expected input tensor to have least 2 dimensions(got {})'
                        .format(x.size(0)))
    
            if x.dim() != 2:
                raise ValueError('Only 2 dimension tensor are implemented, (got {})'
                        .format(x.size()))
    
            smoothed_target = self._smooth_label(target, x.size(1), self.e)
            x = self.log_softmax(x)
            loss = torch.sum(- x * smoothed_target, dim=1)
    
            if self.reduction == 'none':
                return loss
    
            elif self.reduction == 'sum':
                return torch.sum(loss)
    
            elif self.reduction == 'mean':
                return torch.mean(loss)
    
            else:
                raise ValueError('unrecognized option, expect reduction to be one of none, mean, sum')
    

    或者直接在训练文件里做label smoothing

    for images, labels in train_loader:
        images, labels = images.cuda(), labels.cuda()
        N = labels.size(0)
        # C is the number of classes.
        smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
        smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)
    
        score = model(images)
        log_prob = torch.nn.functional.log_softmax(score, dim=1)
        loss = -torch.sum(log_prob * smoothed_labels) / N
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    

    Mixup训练

    beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
    for images, labels in train_loader:
        images, labels = images.cuda(), labels.cuda()
    
        # Mixup images and labels.
        lambda_ = beta_distribution.sample([]).item()
        index = torch.randperm(images.size(0)).cuda()
        mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]
        label_a, label_b = labels, labels[index]
    
        # Mixup loss.
        scores = model(mixed_images)
        loss = (lambda_ * loss_function(scores, label_a)
                + (1 - lambda_) * loss_function(scores, label_b))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    

    L1 正则化

    l1_regularization = torch.nn.L1Loss(reduction='sum')
    loss = ...  # Standard cross-entropy loss
    for param in model.parameters():
        loss += torch.sum(torch.abs(param))
    loss.backward()
    

    不对偏置项进行权重衰减(weight decay)

    pytorch里的weight decay相当于l2正则

    bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
    others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
    parameters = [{'parameters': bias_list, 'weight_decay': 0},                
                  {'parameters': others_list}]
    optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
    

    梯度裁剪(gradient clipping)

    torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)
    

    得到当前学习率

    # If there is one global learning rate (which is the common case).
    lr = next(iter(optimizer.param_groups))['lr']
    
    # If there are multiple learning rates for different layers.
    all_lr = []
    for param_group in optimizer.param_groups:
        all_lr.append(param_group['lr'])
    

    另一种方法,在一个batch训练代码里,当前的lr是optimizer.param_groups[0]['lr']

    学习率衰减

    # Reduce learning rate when validation accuarcy plateau.
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
    for t in range(0, 80):
        train(...)
        val(...)
        scheduler.step(val_acc)
    
    # Cosine annealing learning rate.
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
    # Reduce learning rate by 10 at given epochs.
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
    for t in range(0, 80):
        scheduler.step()    
        train(...)
        val(...)
    
    # Learning rate warmup by 10 epochs.
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
    for t in range(0, 10):
        scheduler.step()
        train(...)
        val(...)
    

    优化器链式更新

    从1.4版本开始,torch.optim.lr_scheduler 支持链式更新(chaining),即用户可以定义两个 schedulers,并交替在训练中使用。

    import torch
    from torch.optim import SGD
    from torch.optim.lr_scheduler import ExponentialLR, StepLR
    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = SGD(model, 0.1)
    scheduler1 = ExponentialLR(optimizer, gamma=0.9)
    scheduler2 = StepLR(optimizer, step_size=3, gamma=0.1)
    for epoch in range(4):
        print(epoch, scheduler2.get_last_lr()[0])
        optimizer.step()
        scheduler1.step()
        scheduler2.step()
    

    模型训练可视化

    PyTorch可以使用tensorboard来可视化训练过程。

    安装和运行TensorBoard。

    pip install tensorboard
    tensorboard --logdir=runs
    

    使用SummaryWriter类来收集和可视化相应的数据,放了方便查看,可以使用不同的文件夹,比如'Loss/train'和'Loss/test'。

    from torch.utils.tensorboard import SummaryWriter
    import numpy as np
    
    writer = SummaryWriter()
    
    for n_iter in range(100):
        writer.add_scalar('Loss/train', np.random.random(), n_iter)
        writer.add_scalar('Loss/test', np.random.random(), n_iter)
        writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
        writer.add_scalar('Accuracy/test', np.random.random(), n_iter)
    

    保存与加载断点

    注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。

    start_epoch = 0
    # Load checkpoint.
    if resume: # resume为参数,第一次训练时设为0,中断再训练时设为1
        model_path = os.path.join('model', 'best_checkpoint.pth.tar')
        assert os.path.isfile(model_path)
        checkpoint = torch.load(model_path)
        best_acc = checkpoint['best_acc']
        start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        print('Load checkpoint at epoch {}.'.format(start_epoch))
        print('Best accuracy so far {}.'.format(best_acc))
    
    # Train the model
    for epoch in range(start_epoch, num_epochs): 
        ... 
    
        # Test the model
        ...
    
        # save checkpoint
        is_best = current_acc > best_acc
        best_acc = max(current_acc, best_acc)
        checkpoint = {
            'best_acc': best_acc,
            'epoch': epoch + 1,
            'model': model.state_dict(),
            'optimizer': optimizer.state_dict(),
        }
        model_path = os.path.join('model', 'checkpoint.pth.tar')
        best_model_path = os.path.join('model', 'best_checkpoint.pth.tar')
        torch.save(checkpoint, model_path)
        if is_best:
            shutil.copy(model_path, best_model_path)
    

    提取 ImageNet 预训练模型某层的卷积特征

    # VGG-16 relu5-3 feature.
    model = torchvision.models.vgg16(pretrained=True).features[:-1]
    # VGG-16 pool5 feature.
    model = torchvision.models.vgg16(pretrained=True).features
    # VGG-16 fc7 feature.
    model = torchvision.models.vgg16(pretrained=True)
    model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
    # ResNet GAP feature.
    model = torchvision.models.resnet18(pretrained=True)
    model = torch.nn.Sequential(collections.OrderedDict(
        list(model.named_children())[:-1]))
    
    with torch.no_grad():
        model.eval()
        conv_representation = model(image)
    

    提取 ImageNet 预训练模型多层的卷积特征

    class FeatureExtractor(torch.nn.Module):
        """Helper class to extract several convolution features from the given
        pre-trained model.
    
        Attributes:
            _model, torch.nn.Module.
            _layers_to_extract, list<str> or set<str>
    
        Example:
            >>> model = torchvision.models.resnet152(pretrained=True)
            >>> model = torch.nn.Sequential(collections.OrderedDict(
                    list(model.named_children())[:-1]))
            >>> conv_representation = FeatureExtractor(
                    pretrained_model=model,
                    layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
        """
        def __init__(self, pretrained_model, layers_to_extract):
            torch.nn.Module.__init__(self)
            self._model = pretrained_model
            self._model.eval()
            self._layers_to_extract = set(layers_to_extract)
    
        def forward(self, x):
            with torch.no_grad():
                conv_representation = []
                for name, layer in self._model.named_children():
                    x = layer(x)
                    if name in self._layers_to_extract:
                        conv_representation.append(x)
                return conv_representation
    

    微调全连接层

    model = torchvision.models.resnet18(pretrained=True)
    for param in model.parameters():
        param.requires_grad = False
    model.fc = nn.Linear(512, 100)  # Replace the last fc layer
    optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)
    

    以较大学习率微调全连接层,较小学习率微调卷积层

    model = torchvision.models.resnet18(pretrained=True)
    finetuned_parameters = list(map(id, model.fc.parameters()))
    conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
    parameters = [{'params': conv_parameters, 'lr': 1e-3}, 
                  {'params': model.fc.parameters()}]
    optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
    

    6. 其他注意事项

    • 不要使用太大的线性层。因为nn.Linear(m,n)使用的是 [图片上传失败...(image-b74479-1602495390321)]

      的内存,线性层太大很容易超出现有显存。

    • 不要在太长的序列上使用RNN。因为RNN反向传播使用的是BPTT算法,其需要的内存和输入序列的长度呈线性关系。

    • model(x) 前用 model.train() 和 model.eval() 切换网络状态。

    • 不需要计算梯度的代码块用 with torch.no_grad() 包含起来。

    • model.eval() 和 torch.no_grad() 的区别在于,model.eval() 是将网络切换为测试状态,例如 BN 和dropout在训练和测试阶段使用不同的计算方法。torch.no_grad() 是关闭 PyTorch 张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行 loss.backward()。

    • model.zero_grad()会把整个模型的参数的梯度都归零, 而optimizer.zero_grad()只会把传入其中的参数的梯度归零.

    • torch.nn.CrossEntropyLoss 的输入不需要经过 Softmax。torch.nn.CrossEntropyLoss 等价于 torch.nn.functional.log_softmax + torch.nn.NLLLoss。

    • loss.backward() 前用 optimizer.zero_grad() 清除累积梯度。

    • torch.utils.data.DataLoader 中尽量设置 pin_memory=True,对特别小的数据集如 MNIST 设置 pin_memory=False 反而更快一些。num_workers 的设置需要在实验中找到最快的取值。

    • 用 del 及时删除不用的中间变量,节约 GPU 存储。

    • 使用 inplace 操作可节约 GPU 存储,如

    x = torch.nn.functional.relu(x, inplace=True)
    
    • 减少 CPU 和 GPU 之间的数据传输。例如如果你想知道一个 epoch 中每个 mini-batch 的 loss 和准确率,先将它们累积在 GPU 中等一个 epoch 结束之后一起传输回 CPU 会比每个 mini-batch 都进行一次 GPU 到 CPU 的传输更快。
    • 使用半精度浮点数 half() 会有一定的速度提升,具体效率依赖于 GPU 型号。需要小心数值精度过低带来的稳定性问题。
    • 时常使用 assert tensor.size() == (N, D, H, W) 作为调试手段,确保张量维度和你设想中一致。
    • 除了标记 y 外,尽量少使用一维张量,使用 n*1 的二维张量代替,可以避免一些意想不到的一维张量计算结果。
    • 统计代码各部分耗时
    with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:
        ...
    print(profile)
    
    # 或者在命令行运行
    python -m torch.utils.bottleneck main.py
    
    • 使用TorchSnooper来调试PyTorch代码,程序在执行的时候,就会自动 print 出来每一行的执行结果的 tensor 的形状、数据类型、设备、是否需要梯度的信息。
    # pip install torchsnooper
    import torchsnooper
    
    # 对于函数,使用修饰器
    @torchsnooper.snoop()
    
    # 如果不是函数,使用 with 语句来激活 TorchSnooper,把训练的那个循环装进 with 语句中去。
    with torchsnooper.snoop():
        原本的代码
    

    https://github.com/zasdfgbnm/TorchSnooper​github.com

    • 模型可解释性,使用captum库

    https://captum.ai/​captum.ai

    参考资料:

    1. 张皓:PyTorch Cookbook(常用代码段整理合集)
    2. PyTorch官方文档示例
    3. https://pytorch.org/docs/stable/notes/faq.html
    4. https://github.com/szagoruyko/pytorchviz
    5. https://github.com/sksq96/pytorch-summary
    6. 其他
      PyTorch最好的资料是官方文档。本文是PyTorch常用代码段,在参考资料[1](张皓:PyTorch Cookbook)的基础上做了一些修补,方便使用时查阅。

    1. 基本配置

    导入包和版本查询

    import torch
    import torch.nn as nn
    import torchvision
    print(torch.__version__)
    print(torch.version.cuda)
    print(torch.backends.cudnn.version())
    print(torch.cuda.get_device_name(0))
    

    可复现性

    在硬件设备(CPU、GPU)不同时,完全的可复现性无法保证,即使随机种子相同。但是,在同一个设备上,应该保证可复现性。具体做法是,在程序开始的时候固定torch的随机种子,同时也把numpy的随机种子固定。

    np.random.seed(0)
    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)
    
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    

    显卡设置

    如果只需要一张显卡

    # Device configuration
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    

    如果需要指定多张显卡,比如0,1号显卡。

    import os
    os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
    

    也可以在命令行运行代码时设置显卡:

    CUDA_VISIBLE_DEVICES=0,1 python train.py
    

    清除显存

    torch.cuda.empty_cache()
    

    也可以使用在命令行重置GPU的指令

    nvidia-smi --gpu-reset -i [gpu_id]
    

    2. 张量(Tensor)处理

    张量的数据类型

    PyTorch有9种CPU张量类型和9种GPU张量类型。

    image

    张量基本信息

    tensor = torch.randn(3,4,5)
    print(tensor.type())  # 数据类型
    print(tensor.size())  # 张量的shape,是个元组
    print(tensor.dim())   # 维度的数量
    

    命名张量

    张量命名是一个非常有用的方法,这样可以方便地使用维度的名字来做索引或其他操作,大大提高了可读性、易用性,防止出错。

    # 在PyTorch 1.3之前,需要使用注释
    # Tensor[N, C, H, W]
    images = torch.randn(32, 3, 56, 56)
    images.sum(dim=1)
    images.select(dim=1, index=0)
    
    # PyTorch 1.3之后
    NCHW = [‘N’, ‘C’, ‘H’, ‘W’]
    images = torch.randn(32, 3, 56, 56, names=NCHW)
    images.sum('C')
    images.select('C', index=0)
    # 也可以这么设置
    tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))
    # 使用align_to可以对维度方便地排序
    tensor = tensor.align_to('N', 'C', 'H', 'W')
    

    数据类型转换

    # 设置默认类型,pytorch中的FloatTensor远远快于DoubleTensor
    torch.set_default_tensor_type(torch.FloatTensor)
    
    # 类型转换
    tensor = tensor.cuda()
    tensor = tensor.cpu()
    tensor = tensor.float()
    tensor = tensor.long()
    

    torch.Tensor与np.ndarray转换

    除了CharTensor,其他所有CPU上的张量都支持转换为numpy格式然后再转换回来。

    ndarray = tensor.cpu().numpy()
    tensor = torch.from_numpy(ndarray).float()
    tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.
    

    Torch.tensor与PIL.Image转换

    # pytorch中的张量默认采用[N, C, H, W]的顺序,并且数据范围在[0,1],需要进行转置和规范化
    # torch.Tensor -> PIL.Image
    image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())
    image = torchvision.transforms.functional.to_pil_image(tensor)  # Equivalently way
    
    # PIL.Image -> torch.Tensor
    path = r'./figure.jpg'
    tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255
    tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way
    

    np.ndarray与PIL.Image的转换

    image = PIL.Image.fromarray(ndarray.astype(np.uint8))
    
    ndarray = np.asarray(PIL.Image.open(path))
    

    从只包含一个元素的张量中提取值

    value = torch.rand(1).item()
    

    张量形变

    # 在将卷积层输入全连接层的情况下通常需要对张量做形变处理,
    # 相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。
    tensor = torch.rand(2,3,4)
    shape = (6, 4)
    tensor = torch.reshape(tensor, shape)
    

    打乱顺序

    tensor = tensor[torch.randperm(tensor.size(0))]  # 打乱第一个维度
    

    水平翻转

    # pytorch不支持tensor[::-1]这样的负步长操作,水平翻转可以通过张量索引实现
    # 假设张量的维度为[N, D, H, W].
    tensor = tensor[:,:,:,torch.arange(tensor.size(3) - 1, -1, -1).long()]
    

    复制张量

    # Operation                 |  New/Shared memory | Still in computation graph |
    tensor.clone()            # |        New         |          Yes               |
    tensor.detach()           # |      Shared        |          No                |
    tensor.detach.clone()()   # |        New         |          No                |
    

    张量拼接

    '''
    注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,
    而torch.stack会新增一维。例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量,
    而torch.stack的结果是3x10x5的张量。
    '''
    tensor = torch.cat(list_of_tensors, dim=0)
    tensor = torch.stack(list_of_tensors, dim=0)
    

    将整数标签转为one-hot编码

    # pytorch的标记默认从0开始
    tensor = torch.tensor([0, 2, 1, 3])
    N = tensor.size(0)
    num_classes = 4
    one_hot = torch.zeros(N, num_classes).long()
    one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())
    

    得到非零元素

    torch.nonzero(tensor)               # index of non-zero elements
    torch.nonzero(tensor==0)            # index of zero elements
    torch.nonzero(tensor).size(0)       # number of non-zero elements
    torch.nonzero(tensor == 0).size(0)  # number of zero elements
    

    判断两个张量相等

    torch.allclose(tensor1, tensor2)  # float tensor
    torch.equal(tensor1, tensor2)     # int tensor
    

    张量扩展

    # Expand tensor of shape 64*512 to shape 64*512*7*7.
    tensor = torch.rand(64,512)
    torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)
    

    矩阵乘法

    # Matrix multiplcation: (m*n) * (n*p) * -> (m*p).
    result = torch.mm(tensor1, tensor2)
    
    # Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)
    result = torch.bmm(tensor1, tensor2)
    
    # Element-wise multiplication.
    result = tensor1 * tensor2
    

    计算两组数据之间的两两欧式距离

    利用broadcast机制

    dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))
    

    3. 模型定义和操作

    一个简单两层卷积网络的示例

    # convolutional neural network (2 convolutional layers)
    class ConvNet(nn.Module):
        def __init__(self, num_classes=10):
            super(ConvNet, self).__init__()
            self.layer1 = nn.Sequential(
                nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
                nn.BatchNorm2d(16),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2, stride=2))
            self.layer2 = nn.Sequential(
                nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
                nn.BatchNorm2d(32),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2, stride=2))
            self.fc = nn.Linear(7*7*32, num_classes)
    
        def forward(self, x):
            out = self.layer1(x)
            out = self.layer2(out)
            out = out.reshape(out.size(0), -1)
            out = self.fc(out)
            return out
    
    model = ConvNet(num_classes).to(device)
    

    卷积层的计算和展示可以用这个网站辅助。

    双线性汇合(bilinear pooling)

    X = torch.reshape(N, D, H * W)                        # Assume X has shape N*D*H*W
    X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W)  # Bilinear pooling
    assert X.size() == (N, D, D)
    X = torch.reshape(X, (N, D * D))
    X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)   # Signed-sqrt normalization
    X = torch.nn.functional.normalize(X)                  # L2 normalization
    

    多卡同步 BN(Batch normalization)

    当使用 torch.nn.DataParallel 将代码运行在多张 GPU 卡上时,PyTorch 的 BN 层默认操作是各卡上数据独立地计算均值和标准差,同步 BN 使用所有卡上的数据一起计算 BN 层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。

    sync_bn = torch.nn.SyncBatchNorm(num_features, eps=1e-05, momentum=0.1, affine=True, 
                                     track_running_stats=True)
    

    将已有网络的所有BN层改为同步BN层

    def convertBNtoSyncBN(module, process_group=None):
        '''Recursively replace all BN layers to SyncBN layer.
    
        Args:
            module[torch.nn.Module]. Network
        '''
        if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
            sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum, 
                                             module.affine, module.track_running_stats, process_group)
            sync_bn.running_mean = module.running_mean
            sync_bn.running_var = module.running_var
            if module.affine:
                sync_bn.weight = module.weight.clone().detach()
                sync_bn.bias = module.bias.clone().detach()
            return sync_bn
        else:
            for name, child_module in module.named_children():
                setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))
            return module
    

    类似 BN 滑动平均

    如果要实现类似 BN 滑动平均的操作,在 forward 函数中要使用原地(inplace)操作给滑动平均赋值。

    class BN(torch.nn.Module)
        def __init__(self):
            ...
            self.register_buffer('running_mean', torch.zeros(num_features))
    
        def forward(self, X):
            ...
            self.running_mean += momentum * (current - self.running_mean)
    

    计算模型整体参数量

    num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())
    

    查看网络中的参数

    可以通过model.state_dict()或者model.named_parameters()函数查看现在的全部可训练参数(包括通过继承得到的父类中的参数)

    params = list(model.named_parameters())
    (name, param) = params[28]
    print(name)
    print(param.grad)
    print('-------------------------------------------------')
    (name2, param2) = params[29]
    print(name2)
    print(param2.grad)
    print('----------------------------------------------------')
    (name1, param1) = params[30]
    print(name1)
    print(param1.grad)
    

    模型可视化(使用pytorchviz)

    szagoruyko/pytorchviz​github.com

    图标

    类似 Keras 的 model.summary() 输出模型信息(使用pytorch-summary

    sksq96/pytorch-summary​github.com

    图标

    模型权重初始化

    注意 model.modules() 和 model.children() 的区别:model.modules() 会迭代地遍历模型的所有子层,而 model.children() 只会遍历模型下的一层。

    # Common practise for initialization.
    for layer in model.modules():
        if isinstance(layer, torch.nn.Conv2d):
            torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',
                                          nonlinearity='relu')
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, val=0.0)
        elif isinstance(layer, torch.nn.BatchNorm2d):
            torch.nn.init.constant_(layer.weight, val=1.0)
            torch.nn.init.constant_(layer.bias, val=0.0)
        elif isinstance(layer, torch.nn.Linear):
            torch.nn.init.xavier_normal_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, val=0.0)
    
    # Initialization with given tensor.
    layer.weight = torch.nn.Parameter(tensor)
    

    提取模型中的某一层

    modules()会返回模型中所有模块的迭代器,它能够访问到最内层,比如self.layer1.conv1这个模块,还有一个与它们相对应的是name_children()属性以及named_modules(),这两个不仅会返回模块的迭代器,还会返回网络层的名字。

    # 取模型中的前两层
    new_model = nn.Sequential(*list(model.children())[:2] 
    # 如果希望提取出模型中的所有卷积层,可以像下面这样操作:
    for layer in model.named_modules():
        if isinstance(layer[1],nn.Conv2d):
             conv_model.add_module(layer[0],layer[1])
    

    部分层使用预训练模型

    注意如果保存的模型是 torch.nn.DataParallel,则当前的模型也需要是

    model.load_state_dict(torch.load('model.pth'), strict=False)
    

    将在 GPU 保存的模型加载到 CPU

    model.load_state_dict(torch.load('model.pth', map_location='cpu'))
    

    导入另一个模型的相同部分到新的模型

    模型导入参数时,如果两个模型结构不一致,则直接导入参数会报错。用下面方法可以把另一个模型的相同的部分导入到新的模型中。

    # model_new代表新的模型
    # model_saved代表其他模型,比如用torch.load导入的已保存的模型
    model_new_dict = model_new.state_dict()
    model_common_dict = {k:v for k, v in model_saved.items() if k in model_new_dict.keys()}
    model_new_dict.update(model_common_dict)
    model_new.load_state_dict(model_new_dict)
    

    4. 数据处理

    计算数据集的均值和标准差

    import os
    import cv2
    import numpy as np
    from torch.utils.data import Dataset
    from PIL import Image
    
    def compute_mean_and_std(dataset):
        # 输入PyTorch的dataset,输出均值和标准差
        mean_r = 0
        mean_g = 0
        mean_b = 0
    
        for img, _ in dataset:
            img = np.asarray(img) # change PIL Image to numpy array
            mean_b += np.mean(img[:, :, 0])
            mean_g += np.mean(img[:, :, 1])
            mean_r += np.mean(img[:, :, 2])
    
        mean_b /= len(dataset)
        mean_g /= len(dataset)
        mean_r /= len(dataset)
    
        diff_r = 0
        diff_g = 0
        diff_b = 0
    
        N = 0
    
        for img, _ in dataset:
            img = np.asarray(img)
    
            diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2))
            diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2))
            diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2))
    
            N += np.prod(img[:, :, 0].shape)
    
        std_b = np.sqrt(diff_b / N)
        std_g = np.sqrt(diff_g / N)
        std_r = np.sqrt(diff_r / N)
    
        mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0)
        std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0)
        return mean, std
    

    得到视频数据基本信息

    import cv2
    video = cv2.VideoCapture(mp4_path)
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = int(video.get(cv2.CAP_PROP_FPS))
    video.release()
    

    TSN 每段(segment)采样一帧视频

    K = self._num_segments
    if is_train:
        if num_frames > K:
            # Random index for each segment.
            frame_indices = torch.randint(
                high=num_frames // K, size=(K,), dtype=torch.long)
            frame_indices += num_frames // K * torch.arange(K)
        else:
            frame_indices = torch.randint(
                high=num_frames, size=(K - num_frames,), dtype=torch.long)
            frame_indices = torch.sort(torch.cat((
                torch.arange(num_frames), frame_indices)))[0]
    else:
        if num_frames > K:
            # Middle index for each segment.
            frame_indices = num_frames / K // 2
            frame_indices += num_frames // K * torch.arange(K)
        else:
            frame_indices = torch.sort(torch.cat((                              
                torch.arange(num_frames), torch.arange(K - num_frames))))[0]
    assert frame_indices.size() == (K,)
    return [frame_indices[i] for i in range(K)]
    

    常用训练和验证数据预处理

    其中 ToTensor 操作会将 PIL.Image 或形状为 H×W×D,数值范围为 [0, 255] 的 np.ndarray 转换为形状为 D×H×W,数值范围为 [0.0, 1.0] 的 torch.Tensor。

    train_transform = torchvision.transforms.Compose([
        torchvision.transforms.RandomResizedCrop(size=224,
                                                 scale=(0.08, 1.0)),
        torchvision.transforms.RandomHorizontalFlip(),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                         std=(0.229, 0.224, 0.225)),
     ])
     val_transform = torchvision.transforms.Compose([
        torchvision.transforms.Resize(256),
        torchvision.transforms.CenterCrop(224),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                         std=(0.229, 0.224, 0.225)),
    ])
    

    5. 模型训练和测试

    分类模型训练代码

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
    # Train the model
    total_step = len(train_loader)
    for epoch in range(num_epochs):
        for i ,(images, labels) in enumerate(train_loader):
            images = images.to(device)
            labels = labels.to(device)
    
            # Forward pass
            outputs = model(images)
            loss = criterion(outputs, labels)
    
            # Backward and optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
            if (i+1) % 100 == 0:
                print('Epoch: [{}/{}], Step: [{}/{}], Loss: {}'
                      .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
    

    分类模型测试代码

    # Test the model
    model.eval()  # eval mode(batch norm uses moving mean/variance 
                  #instead of mini-batch mean/variance)
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
        print('Test accuracy of the model on the 10000 test images: {} %'
              .format(100 * correct / total))
    

    自定义loss

    继承torch.nn.Module类写自己的loss。

    class MyLoss(torch.nn.Moudle):
        def __init__(self):
            super(MyLoss, self).__init__()
    
        def forward(self, x, y):
            loss = torch.mean((x - y) ** 2)
            return loss
    

    标签平滑(label smoothing)

    写一个label_smoothing.py的文件,然后在训练代码里引用,用LSR代替交叉熵损失即可。label_smoothing.py内容如下:

    import torch
    import torch.nn as nn
    
    class LSR(nn.Module):
    
        def __init__(self, e=0.1, reduction='mean'):
            super().__init__()
    
            self.log_softmax = nn.LogSoftmax(dim=1)
            self.e = e
            self.reduction = reduction
    
        def _one_hot(self, labels, classes, value=1):
            """
                Convert labels to one hot vectors
    
            Args:
                labels: torch tensor in format [label1, label2, label3, ...]
                classes: int, number of classes
                value: label value in one hot vector, default to 1
    
            Returns:
                return one hot format labels in shape [batchsize, classes]
            """
    
            one_hot = torch.zeros(labels.size(0), classes)
    
            #labels and value_added  size must match
            labels = labels.view(labels.size(0), -1)
            value_added = torch.Tensor(labels.size(0), 1).fill_(value)
    
            value_added = value_added.to(labels.device)
            one_hot = one_hot.to(labels.device)
    
            one_hot.scatter_add_(1, labels, value_added)
    
            return one_hot
    
        def _smooth_label(self, target, length, smooth_factor):
            """convert targets to one-hot format, and smooth
            them.
            Args:
                target: target in form with [label1, label2, label_batchsize]
                length: length of one-hot format(number of classes)
                smooth_factor: smooth factor for label smooth
    
            Returns:
                smoothed labels in one hot format
            """
            one_hot = self._one_hot(target, length, value=1 - smooth_factor)
            one_hot += smooth_factor / (length - 1)
    
            return one_hot.to(target.device)
    
        def forward(self, x, target):
    
            if x.size(0) != target.size(0):
                raise ValueError('Expected input batchsize ({}) to match target batch_size({})'
                        .format(x.size(0), target.size(0)))
    
            if x.dim() < 2:
                raise ValueError('Expected input tensor to have least 2 dimensions(got {})'
                        .format(x.size(0)))
    
            if x.dim() != 2:
                raise ValueError('Only 2 dimension tensor are implemented, (got {})'
                        .format(x.size()))
    
            smoothed_target = self._smooth_label(target, x.size(1), self.e)
            x = self.log_softmax(x)
            loss = torch.sum(- x * smoothed_target, dim=1)
    
            if self.reduction == 'none':
                return loss
    
            elif self.reduction == 'sum':
                return torch.sum(loss)
    
            elif self.reduction == 'mean':
                return torch.mean(loss)
    
            else:
                raise ValueError('unrecognized option, expect reduction to be one of none, mean, sum')
    

    或者直接在训练文件里做label smoothing

    for images, labels in train_loader:
        images, labels = images.cuda(), labels.cuda()
        N = labels.size(0)
        # C is the number of classes.
        smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
        smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)
    
        score = model(images)
        log_prob = torch.nn.functional.log_softmax(score, dim=1)
        loss = -torch.sum(log_prob * smoothed_labels) / N
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    

    Mixup训练

    beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
    for images, labels in train_loader:
        images, labels = images.cuda(), labels.cuda()
    
        # Mixup images and labels.
        lambda_ = beta_distribution.sample([]).item()
        index = torch.randperm(images.size(0)).cuda()
        mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]
        label_a, label_b = labels, labels[index]
    
        # Mixup loss.
        scores = model(mixed_images)
        loss = (lambda_ * loss_function(scores, label_a)
                + (1 - lambda_) * loss_function(scores, label_b))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    

    L1 正则化

    l1_regularization = torch.nn.L1Loss(reduction='sum')
    loss = ...  # Standard cross-entropy loss
    for param in model.parameters():
        loss += torch.sum(torch.abs(param))
    loss.backward()
    

    不对偏置项进行权重衰减(weight decay)

    pytorch里的weight decay相当于l2正则

    bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
    others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
    parameters = [{'parameters': bias_list, 'weight_decay': 0},                
                  {'parameters': others_list}]
    optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
    

    梯度裁剪(gradient clipping)

    torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)
    

    得到当前学习率

    # If there is one global learning rate (which is the common case).
    lr = next(iter(optimizer.param_groups))['lr']
    
    # If there are multiple learning rates for different layers.
    all_lr = []
    for param_group in optimizer.param_groups:
        all_lr.append(param_group['lr'])
    

    另一种方法,在一个batch训练代码里,当前的lr是optimizer.param_groups[0]['lr']

    学习率衰减

    # Reduce learning rate when validation accuarcy plateau.
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
    for t in range(0, 80):
        train(...)
        val(...)
        scheduler.step(val_acc)
    
    # Cosine annealing learning rate.
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
    # Reduce learning rate by 10 at given epochs.
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
    for t in range(0, 80):
        scheduler.step()    
        train(...)
        val(...)
    
    # Learning rate warmup by 10 epochs.
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
    for t in range(0, 10):
        scheduler.step()
        train(...)
        val(...)
    

    优化器链式更新

    从1.4版本开始,torch.optim.lr_scheduler 支持链式更新(chaining),即用户可以定义两个 schedulers,并交替在训练中使用。

    import torch
    from torch.optim import SGD
    from torch.optim.lr_scheduler import ExponentialLR, StepLR
    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = SGD(model, 0.1)
    scheduler1 = ExponentialLR(optimizer, gamma=0.9)
    scheduler2 = StepLR(optimizer, step_size=3, gamma=0.1)
    for epoch in range(4):
        print(epoch, scheduler2.get_last_lr()[0])
        optimizer.step()
        scheduler1.step()
        scheduler2.step()
    

    模型训练可视化

    PyTorch可以使用tensorboard来可视化训练过程。

    安装和运行TensorBoard。

    pip install tensorboard
    tensorboard --logdir=runs
    

    使用SummaryWriter类来收集和可视化相应的数据,放了方便查看,可以使用不同的文件夹,比如'Loss/train'和'Loss/test'。

    from torch.utils.tensorboard import SummaryWriter
    import numpy as np
    
    writer = SummaryWriter()
    
    for n_iter in range(100):
        writer.add_scalar('Loss/train', np.random.random(), n_iter)
        writer.add_scalar('Loss/test', np.random.random(), n_iter)
        writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
        writer.add_scalar('Accuracy/test', np.random.random(), n_iter)
    

    保存与加载断点

    注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。

    start_epoch = 0
    # Load checkpoint.
    if resume: # resume为参数,第一次训练时设为0,中断再训练时设为1
        model_path = os.path.join('model', 'best_checkpoint.pth.tar')
        assert os.path.isfile(model_path)
        checkpoint = torch.load(model_path)
        best_acc = checkpoint['best_acc']
        start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        print('Load checkpoint at epoch {}.'.format(start_epoch))
        print('Best accuracy so far {}.'.format(best_acc))
    
    # Train the model
    for epoch in range(start_epoch, num_epochs): 
        ... 
    
        # Test the model
        ...
    
        # save checkpoint
        is_best = current_acc > best_acc
        best_acc = max(current_acc, best_acc)
        checkpoint = {
            'best_acc': best_acc,
            'epoch': epoch + 1,
            'model': model.state_dict(),
            'optimizer': optimizer.state_dict(),
        }
        model_path = os.path.join('model', 'checkpoint.pth.tar')
        best_model_path = os.path.join('model', 'best_checkpoint.pth.tar')
        torch.save(checkpoint, model_path)
        if is_best:
            shutil.copy(model_path, best_model_path)
    

    提取 ImageNet 预训练模型某层的卷积特征

    # VGG-16 relu5-3 feature.
    model = torchvision.models.vgg16(pretrained=True).features[:-1]
    # VGG-16 pool5 feature.
    model = torchvision.models.vgg16(pretrained=True).features
    # VGG-16 fc7 feature.
    model = torchvision.models.vgg16(pretrained=True)
    model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
    # ResNet GAP feature.
    model = torchvision.models.resnet18(pretrained=True)
    model = torch.nn.Sequential(collections.OrderedDict(
        list(model.named_children())[:-1]))
    
    with torch.no_grad():
        model.eval()
        conv_representation = model(image)
    

    提取 ImageNet 预训练模型多层的卷积特征

    class FeatureExtractor(torch.nn.Module):
        """Helper class to extract several convolution features from the given
        pre-trained model.
    
        Attributes:
            _model, torch.nn.Module.
            _layers_to_extract, list<str> or set<str>
    
        Example:
            >>> model = torchvision.models.resnet152(pretrained=True)
            >>> model = torch.nn.Sequential(collections.OrderedDict(
                    list(model.named_children())[:-1]))
            >>> conv_representation = FeatureExtractor(
                    pretrained_model=model,
                    layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
        """
        def __init__(self, pretrained_model, layers_to_extract):
            torch.nn.Module.__init__(self)
            self._model = pretrained_model
            self._model.eval()
            self._layers_to_extract = set(layers_to_extract)
    
        def forward(self, x):
            with torch.no_grad():
                conv_representation = []
                for name, layer in self._model.named_children():
                    x = layer(x)
                    if name in self._layers_to_extract:
                        conv_representation.append(x)
                return conv_representation
    

    微调全连接层

    model = torchvision.models.resnet18(pretrained=True)
    for param in model.parameters():
        param.requires_grad = False
    model.fc = nn.Linear(512, 100)  # Replace the last fc layer
    optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)
    

    以较大学习率微调全连接层,较小学习率微调卷积层

    model = torchvision.models.resnet18(pretrained=True)
    finetuned_parameters = list(map(id, model.fc.parameters()))
    conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
    parameters = [{'params': conv_parameters, 'lr': 1e-3}, 
                  {'params': model.fc.parameters()}]
    optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
    

    6. 其他注意事项

    • 不要使用太大的线性层。因为nn.Linear(m,n)使用的是 [图片上传失败...(image-69cfad-1602495395354)]

      的内存,线性层太大很容易超出现有显存。

    • 不要在太长的序列上使用RNN。因为RNN反向传播使用的是BPTT算法,其需要的内存和输入序列的长度呈线性关系。

    • model(x) 前用 model.train() 和 model.eval() 切换网络状态。

    • 不需要计算梯度的代码块用 with torch.no_grad() 包含起来。

    • model.eval() 和 torch.no_grad() 的区别在于,model.eval() 是将网络切换为测试状态,例如 BN 和dropout在训练和测试阶段使用不同的计算方法。torch.no_grad() 是关闭 PyTorch 张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行 loss.backward()。

    • model.zero_grad()会把整个模型的参数的梯度都归零, 而optimizer.zero_grad()只会把传入其中的参数的梯度归零.

    • torch.nn.CrossEntropyLoss 的输入不需要经过 Softmax。torch.nn.CrossEntropyLoss 等价于 torch.nn.functional.log_softmax + torch.nn.NLLLoss。

    • loss.backward() 前用 optimizer.zero_grad() 清除累积梯度。

    • torch.utils.data.DataLoader 中尽量设置 pin_memory=True,对特别小的数据集如 MNIST 设置 pin_memory=False 反而更快一些。num_workers 的设置需要在实验中找到最快的取值。

    • 用 del 及时删除不用的中间变量,节约 GPU 存储。

    • 使用 inplace 操作可节约 GPU 存储,如

    x = torch.nn.functional.relu(x, inplace=True)
    
    • 减少 CPU 和 GPU 之间的数据传输。例如如果你想知道一个 epoch 中每个 mini-batch 的 loss 和准确率,先将它们累积在 GPU 中等一个 epoch 结束之后一起传输回 CPU 会比每个 mini-batch 都进行一次 GPU 到 CPU 的传输更快。
    • 使用半精度浮点数 half() 会有一定的速度提升,具体效率依赖于 GPU 型号。需要小心数值精度过低带来的稳定性问题。
    • 时常使用 assert tensor.size() == (N, D, H, W) 作为调试手段,确保张量维度和你设想中一致。
    • 除了标记 y 外,尽量少使用一维张量,使用 n*1 的二维张量代替,可以避免一些意想不到的一维张量计算结果。
    • 统计代码各部分耗时
    with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:
        ...
    print(profile)
    
    # 或者在命令行运行
    python -m torch.utils.bottleneck main.py
    
    • 使用TorchSnooper来调试PyTorch代码,程序在执行的时候,就会自动 print 出来每一行的执行结果的 tensor 的形状、数据类型、设备、是否需要梯度的信息。
    # pip install torchsnooper
    import torchsnooper
    
    # 对于函数,使用修饰器
    @torchsnooper.snoop()
    
    # 如果不是函数,使用 with 语句来激活 TorchSnooper,把训练的那个循环装进 with 语句中去。
    with torchsnooper.snoop():
        原本的代码
    

    https://github.com/zasdfgbnm/TorchSnooper​github.com

    • 模型可解释性,使用captum库

    https://captum.ai/​captum.ai

    参考资料:

    1. 张皓:PyTorch Cookbook(常用代码段整理合集)
    2. PyTorch官方文档示例
    3. https://pytorch.org/docs/stable/notes/faq.html
    4. https://github.com/szagoruyko/pytorchviz
    5. https://github.com/sksq96/pytorch-summary
    6. 其他

    相关文章

      网友评论

        本文标题:[深度学习框架]PyTorch常用代码段

        本文链接:https://www.haomeiwen.com/subject/cqrppktx.html