关于Hive的一些总结

作者: 阿猫阿狗Hakuna | 来源:发表于2019-01-04 16:09 被阅读1次

    一.数据类型

    • hive数据类型包含基本数据类型(int,double...)和集合数据类型(array,map,struct)。
    • 传统数据库是写时模式,数据在写入数据库时进行模式检查,Hive是读时模式。

    二.HiveSQL

    • 内部表和外部表:删除一个内部表时,Hive同时会删除这个表中的数据。删除外部表时,只会删除外部表的元数据。有些HiveSQL语法不适用于外部表。
    • 分区:对数据进行分区,可以使得查询更快,这是因为仅仅需要查询指定目录下的内容。当在where子句中增加谓词按照分区值过滤时,这些谓词被称为分区过滤器
    • Hive支持Hive Join语句,但只支持等值连接(不支持大于、小于)。不支持在ON子句中使用OR。
    • JOIN优化:
      (1)对3个以上表进行JOIN连接时,如果每个ON子句都使用相同连接键,只会产生一个MapReduce job。
      (2)Hive假定查询中最后一个表是最大的那个表。对每行记录进行连接操作时,它会尝试把其他表缓存起来,扫描最后那个表进行计算。因此,用户需要保证连接查询中的表大小从左到右是依次增加的。
    • ORDER BY和SORT BY
      ORDER BY会对查询结果集进行一个全局排序,也就是说所有数据都通过一个reducer进行处理,对于大数据集,这个过程会消耗很长时间。SORT BY只会在每个reducer中对数据进行排序,也就是执行一个局部排序的过程。这样可以保证每个reducer的输出数据都是有序的(并非全局有序)。这样可以提高后面全局排序的效率。
    • 含有SORT BY的DISTRIBUTE BY
      DISTRIBUTE BY控制map的输出在reducer中如何划分。默认情况下,在使用SORT BY时,不同reducer的输出内容会有重叠,如果希望一批数据在一起处理,可以使用DISTRIBUTE BY保证其被分发到同一个reducer中处理,然后使用SORT BY来保证有序。
      Hive要求DISTRIBUTE BY语句写在SORT BY语句之前。

    三.Schema设计

    • 不要有过多分区
      HDFS设计存储大文件,而不是大量小文件。使用过多分区可能导致创建大量HDFS小文件。一个分区对应着一个包含多个文件的文件夹。如果表存在数百个分区,那么每天可能创建好几万个小文件。NameNode必须把所有系统文件的元数据信息保存在内存中,大量的小文件会增大NameNode的压力。
      MapReduce会将一个job转换为多个task。每个文件都是一个task,所以大量的小文件会造成大量的task,每个task都是一个新的JVM实例,这需要开启和销毁的开销。
      如果用户不能找到合适的分区方式的话,可以考虑使用分桶存储。
    • 同一份数据多种处理
      Hive可以从一个数据源产生多个数据聚合,无需每次聚合都要重新扫描。比如:
      insert overwrite table sales select * from history where action='purchased';
      insert overwrite table creditsselect * from history where action='returned';
      可以转换为以下语句:
      from history
      insert overwrite sales select * where action='purchased'
      insert overwrite credits select * where action='returned';
    • 分桶
      分区提供一个隔离数据和优化查询的便利方式。但是并非所有数据集都可形成合理分区,特别是之前所提到的要确定合适的划分大小。
      分桶是将数据集分解成更容易管理的若干部分的另一个技术。
      例子:对表weblog进行分桶,使用user_id字段作为分桶字段,则字段值会根据用户指定的值进行哈希分发到桶中。同一个user_id下的记录通常会存储到同一个桶内。假设用户数比桶数多得多,每个桶内就会包含多个用户记录。
      create table weblog(user_id INT, url STRING, source_ip STRING) PARTITIONED BY (dt STRING) CLUSTERED BY (user_id) INTO 96 BUCKETS;

    四.调优

    • EXPLAIN
      例子:EXPLAIN select sum(number) from onecol;
      EXPLAIN会打印出抽象语法树,表明Hive是如何将查询解析成token(符号)以及literal(字面值)的。可以通过EXPLAIN分区物理执行计划以分析复杂的或执行效率低的查询。
      需要尝试各种调优时,可以在“逻辑”层看到这些调整会产生什么影响。
      EXPLAIN EXTENDED会产生更多输出信息。
    • LIMIT调优
      默认情况下,LIMIT语句需要执行整个查询语句,然后返回部分结果。可以避免这种情况,开启一个配置属性,使用LIMIT语句时,对源数据进行抽样:


      image.png

      这个功能一个缺点是输入中有用数据永远不会被处理到。

    • JOIN优化
      把最大的表放在JOIN语句的最右边,或者直接使用/* streamtable(table_name) */语句指出。
    • 本地模式
      对于小数据集,可以通过本地模式在单台机器上处理所有任务,执行时间会缩短,开启方式:


      image.png
    • 并行执行
      hive的一个job可能包含多个stage,默认情况下hive一次只执行一个stage,开启参数可以使得stage并发执行:


      image.png
    • 严格模式
      设置hive.mapred.mode值为strict,禁止3种类型查询:
      (1)对于分区表,除非where中含有分区字段过滤条件限制数据范围,否则不允许执行。
      (2)对于使用了ORDER BY语句的查询,必须使用LIMIT语句。
      (3)限制笛卡尔积的查询。
    • 调整mapper和reducer个数
      如果mappper和reducer任务太多,会导致过多的开销;如果太少,不能充分利用并行性。
      hive按照输入数据量大小来确定reducer个数,可以通过dfs -count命令来计算输入量大小。
      属性hive.exec.reducers.bytes.reducer的默认值是1GB。
      在共享集群上处理大任务时,为了控制资源利用情况,属性hive.exec.reducers.max非常重要。可以阻止某个查询消耗太多reducer资源。
    • JVM重用
      JVM适用于小文件及task特别多的场景,这类场景大多数执行时间都很短。
      Hadoop默认使用派生JVM来执行map和reduce任务,这时JVM的启动过程会造成相当大的开销,尤其执行的job包含大量task任务的情况。
      JVM重用可使得JVM实例在同一个job中重新使用N次,N的值可以设置。


      image.png

    五.文件格式与压缩方法

    • GZip和Snappy压缩的文件不可再分,BZip2和LZO提供了块(BLOCK)级别的压缩,可以再分。
    • Hive中文件是如何分隔成行(记录)的?文本文件使用\n(换行符)作为行分隔符。如果不是默认的文本文件格式,用户需要指定Hive使用的InputFormat(定义了如何划分记录)和OutputFormat(定义了如何将这些划分写回到文件或控制台输出中)。
    • 开启中间压缩,减少map和reduce task间的数据传输量
    • sequence file存储格式
      大多数的压缩文件不可分割。hadoop支持的sequence file存储格式可以将一个文件划分为多个块,采用一种可分割的方式对块进行压缩。


    六.函数

    • 如何添加自定义UDF?
      Java代码编译,打成jar包。


      image.png
      image.png

      删除函数:


      image.png

    七.自定义Hive文件和记录格式

    • 文件格式
      (1)SequenceFile
      SequenceFile文件是含有键-值对的二进制文件,其是Hadoop本身就支持的一种标准文件格式。
      SequenceFile可以在块级别和记录级别进行压缩,这对于优化磁盘利用率和I/O来说非常有意义。同时仍然可以支持按照块级别的文件分隔,以方便并行处理。
      (2)RCfile
      对于特定类型的数据和应用来说,采用列式存储会更好。比如,指定表有非常多的字段,大多数的查询只涉及到其中一小部分字段,这时扫描所有行而过滤掉大部分数据显然是浪费。
      基于以上场景,Hive设计了RCFile。
      Hive提供了一个rcfilecat工具展示RCFile文件内容:
      hive --service rcfilecat /user/hive/warehouse/columntable/000000_0

    • 记录格式:SerDe
      SerDe是序列化/反序列化的简写形式。一个SerDe包含了将一条记录的非结构化字节(文件存储的一部分)转化成Hive可以使用的一条记录的过程。
      Hive在内部使用自定义的InputFormat读取一行数据记录,之后传递给SerDe.deserialize()方法进行处理。
      常用的SerDe有CSV SerDe、TSV SerDe,JSON SerDe,Avro Hive SerDe等。

    八.Thrift服务

    Thrift是一个软件框架,用于跨语言的服务开发。Thrift允许客户端用不同语言通过编程方式远程访问Hive。

    • 管理HiveServer
      (1)在生产环境中使用HiveServer
      客户端机器需要进行的形成执行计划和管理task的工作现在需要由服务端来完成。如果同时执行多个客户端的话,会对单个HiveServer造成太大压力。一种解决办法是使用TCP负载均衡或者通过代理为一组后面的服务器进行均衡连接。
      一种可用的工具是haproxy。

    • Hive ThriftMetastore
      Hive会话会直连到一个JDBC数据库,这个数据库用作元数据存储数据库。Hive提供了一个可选组件名为ThriftMetastore。
      hive --service metastoe &
      netstat -an | grep 9083

    九.锁

    Hive缺少通常在update和insert类型的查询中使用到的对于列、行或者查询级别的锁支持。但是Hadoop和Hive是多用户系统,在一些情况下,锁是必要的。

    • 结合Zookeeper支持锁功能
      配置Hive,使其可以使用Zookeeper来启用并发支持。
      在$hive_home/hive-site.xml配置文件中,增加如下属性:


      image.png

      Hive中提供了2种类型的锁,读取某个表的时候需要共享锁,修改表的操作需要独占锁。

    相关文章

      网友评论

        本文标题:关于Hive的一些总结

        本文链接:https://www.haomeiwen.com/subject/csqkrqtx.html