美文网首页
今日学术视野(2019.2.19)

今日学术视野(2019.2.19)

作者: ZQtGe6 | 来源:发表于2019-02-19 05:21 被阅读97次

cs.AI - 人工智能
cs.CL - 计算与语言
cs.CV - 机器视觉与模式识别
cs.CY - 计算与社会
cs.DC - 分布式、并行与集群计算
cs.DS - 数据结构与算法
cs.GT - 计算机科学与博弈论
cs.IR - 信息检索
cs.IT - 信息论
cs.LG - 自动学习
cs.LO - 计算逻辑
cs.MA - 多代理系统
cs.NE - 神经与进化计算
cs.RO - 机器人学
cs.SI - 社交网络与信息网络
math.CO - 组合数学
math.OC - 优化与控制
math.PR - 概率
math.ST - 统计理论
physics.med-ph - 医学物理学
physics.soc-ph - 物理学与社会
q-bio.QM - 定量方法
q-fin.PR - 证券定价
quant-ph - 量子物理
stat.AP - 应用统计
stat.ME - 统计方法论
stat.ML - (统计)机器学习

• [cs.AI]Active Perception in Adversarial Scenarios using Maximum Entropy Deep Reinforcement Learning
• [cs.AI]Probabilistic Relational Agent-based Models
• [cs.AI]Verifiably Safe Off-Model Reinforcement Learning
• [cs.CL]Context-Aware Self-Attention Networks
• [cs.CL]Dynamic Layer Aggregation for Neural Machine Translation with Routing-by-Agreement
• [cs.CL]Generating Natural Language Explanations for Visual Question Answering using Scene Graphs and Visual Attention
• [cs.CV]Breaking the Spatio-Angular Trade-off for Light Field Super-Resolution via LSTM Modelling on Epipolar Plane Images
• [cs.CV]Cycle-Consistency for Robust Visual Question Answering
• [cs.CV]Deeply Supervised Multimodal Attentional Translation Embeddings for Visual Relationship Detection
• [cs.CV]Enhancing Remote Sensing Image Retrieval with Triplet Deep Metric Learning Network
• [cs.CV]GeoGAN: A Conditional GAN with Reconstruction and Style Loss to Generate Standard Layer of Maps from Satellite Images
• [cs.CV]Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions
• [cs.CV]Lightweight Feature Fusion Network for Single Image Super-Resolution
• [cs.CV]Massively Parallel Benders Decomposition for Correlation Clustering
• [cs.CV]Street Scene: A new dataset and evaluation protocol for video anomaly detection
• [cs.CV]TMAV: Temporal Motionless Analysis of Video using CNN in MPSoC
• [cs.CV]Unsupervised shape and motion analysis of 3822 cardiac 4D MRIs of UK Biobank
• [cs.CY]Crime Analysis using Open Source Information
• [cs.CY]On the computational models for the analysis of illicit activities
• [cs.CY]Who Watches the Watchmen: Exploring Complaints on the Web
• [cs.DC]A Comparison of Random Task Graph Generation Methods for Scheduling Problems
• [cs.DC]A Scalable Framework for Distributed Object Tracking across a Many-camera Network
• [cs.DC]Distributed Processes and Scalability in Sub-networks of Large-Scale Networks
• [cs.DC]Optimizing the SSD Burst Buffer by Traffic Detection
• [cs.DC]Spectrum: A Framework for Adapting Consensus Protocols
• [cs.DS]Finding Nearest Neighbors in graphs locally
• [cs.GT]Competing Bandits: The Perils of Exploration under Competition
• [cs.IR]Interest-Related Item Similarity Model Based on Multimodal Data for Top-N Recommendation
• [cs.IR]Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems
• [cs.IT]Achieving Large Sum Rate and Good Fairness in MISO Broadcast Communication
• [cs.IT]Fog-Assisted Multi-User SWIPT Networks: Local Computing or Offloading
• [cs.IT]Multi-target Position and Velocity Estimation Using OFDM Communication Signals
• [cs.IT]Solving Complex Quadratic Systems with Full-Rank Random Matrices
• [cs.LG]A Convolutional Network for Sleep Stages Classification
• [cs.LG]Adversarially Approximated Autoencoder for Image Generation and Manipulation
• [cs.LG]AutoQB: AutoML for Network Quantization and Binarization on Mobile Devices
• [cs.LG]Can Intelligent Hyperparameter Selection Improve Resistance to Adversarial Examples?
• [cs.LG]CrossNorm: Normalization for Off-Policy TD Reinforcement Learning
• [cs.LG]Deep Reinforcement Learning Based High-level Driving Behavior Decision-making Model in Heterogeneous Traffic
• [cs.LG]Efficient Deep Learning of GMMs
• [cs.LG]Fast Task-Aware Architecture Inference
• [cs.LG]Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations
• [cs.LG]KINN: Incorporating Expert Knowledge in Neural Networks
• [cs.LG]Learning to Adaptively Scale Recurrent Neural Networks
• [cs.LG]Lipschitz Generative Adversarial Nets
• [cs.LG]Quick and Easy Time Series Generation with Established Image-based GANs
• [cs.LG]Reinforcement Learning Without Backpropagation or a Clock
• [cs.LG]Robust Reinforcement Learning in POMDPs with Incomplete and Noisy Observations
• [cs.LG]SVM-based Deep Stacking Networks
• [cs.LG]The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the xAUC Metric
• [cs.LG]WaveletFCNN: A Deep Time Series Classification Model for Wind Turbine Blade Icing Detection
• [cs.LO]Shepherding Hordes of Markov Chains
• [cs.MA]Privacy of Existence of Secrets: Introducing Steganographic DCOPs and Revisiting DCOP Frameworks
• [cs.NE]Deep Spiking Neural Network with Spike Count based Learning Rule
• [cs.RO]Bi-directional Value Learning for Risk-aware Planning Under Uncertainty
• [cs.RO]Network Offloading Policies for Cloud Robotics: a Learning-based Approach
• [cs.RO]Robot Co-design: Beyond the Monotone Case
• [cs.RO]Two-Stage Transfer Learning for Heterogeneous Robot Detection and 3D Joint Position Estimation in a 2D Camera Image using CNN
• [cs.SI]Discovering Archetypes to Interpret Evolution of Individual Behavior
• [cs.SI]Using Key Player Analysis as a Method for Examining the Role of Community Animators in Technology Adoption
• [math.CO]Universally Sparse Hypergraphs with Applications to Coding Theory
• [math.OC]ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
• [math.PR]Effective distribution of codewords for Low Density Parity Check Cycle codes in the presence of disorder
• [math.ST]Distributionally Robust Inference for Extreme Value-at-Risk
• [math.ST]Dualizing Le Cam's method, with applications to estimating the unseens
• [math.ST]Quantile double autoregression
• [physics.med-ph]Estimation of blood oxygenation with learned spectral decoloring for quantitative photoacoustic imaging (LSD-qPAI)
• [physics.soc-ph]When Celebrities Speak: A Nationwide Twitter Experiment Promoting Vaccination in Indonesia
• [q-bio.QM]Critical Transitions in Intensive Care Units: A Sepsis Case Study
• [q-fin.PR]Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes
• [quant-ph]Memory effects teleportation of quantum Fisher information under decoherence
• [stat.AP]BAREB: A Bayesian repulsive biclustering model for periodontal data
• [stat.ME]Asymptotically exact data augmentation: models, properties and algorithms
• [stat.ME]Structured Shrinkage Priors
• [stat.ML]Classification with unknown class conditional label noise on non-compact feature spaces
• [stat.ML]Exponentially-Modified Gaussian Mixture Model: Applications in Spectroscopy
• [stat.ML]Translation Insensitivity for Deep Convolutional Gaussian Processes

·····································

• [cs.AI]Active Perception in Adversarial Scenarios using Maximum Entropy Deep Reinforcement Learning
Macheng Shen, Jonathan P How
http://arxiv.org/abs/1902.05644v1

• [cs.AI]Probabilistic Relational Agent-based Models
Paul Cohen
http://arxiv.org/abs/1902.05677v1

• [cs.AI]Verifiably Safe Off-Model Reinforcement Learning
Nathan Fulton, Andre Platzer
http://arxiv.org/abs/1902.05632v1

• [cs.CL]Context-Aware Self-Attention Networks
Baosong Yang, Jian Li, Derek Wong, Lidia S. Chao, Xing Wang, Zhaopeng Tu
http://arxiv.org/abs/1902.05766v1

• [cs.CL]Dynamic Layer Aggregation for Neural Machine Translation with Routing-by-Agreement
Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Longyue Wang, Shuming Shi, Tong Zhang
http://arxiv.org/abs/1902.05770v1

• [cs.CL]Generating Natural Language Explanations for Visual Question Answering using Scene Graphs and Visual Attention
Shalini Ghosh, Giedrius Burachas, Arijit Ray, Avi Ziskind
http://arxiv.org/abs/1902.05715v1

• [cs.CV]Breaking the Spatio-Angular Trade-off for Light Field Super-Resolution via LSTM Modelling on Epipolar Plane Images
Hao Zhu, Mantang Guo, Hongdong Li, Qing Wang, Antonio Robles-Kelly
http://arxiv.org/abs/1902.05672v1

• [cs.CV]Cycle-Consistency for Robust Visual Question Answering
Meet Shah, Xinlei Chen, Marcus Rohrbach, Devi Parikh
http://arxiv.org/abs/1902.05660v1

• [cs.CV]Deeply Supervised Multimodal Attentional Translation Embeddings for Visual Relationship Detection
Nikolaos Gkanatsios, Vassilis Pitsikalis, Petros Koutras, Athanasia Zlatintsi, Petros Maragos
http://arxiv.org/abs/1902.05829v1

• [cs.CV]Enhancing Remote Sensing Image Retrieval with Triplet Deep Metric Learning Network
Rui Cao, Qian Zhang, Jiasong Zhu, Qing Li, Qingquan Li, Bozhi Liu, Guoping Qiu
http://arxiv.org/abs/1902.05818v1

• [cs.CV]GeoGAN: A Conditional GAN with Reconstruction and Style Loss to Generate Standard Layer of Maps from Satellite Images
Swetava Ganguli, Pedro Garzon, Noa Glaser
http://arxiv.org/abs/1902.05611v1

• [cs.CV]Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions
Fouzia Altaf, Syed M. S. Islam, Naveed Akhtar, Naeem K. Janjua
http://arxiv.org/abs/1902.05655v1

• [cs.CV]Lightweight Feature Fusion Network for Single Image Super-Resolution
Wenming Yang, Wei Wang, Xuechen Zhang, Shuifa Sun, Qingmin Liao
http://arxiv.org/abs/1902.05694v1

• [cs.CV]Massively Parallel Benders Decomposition for Correlation Clustering
Margret Keuper, Maneesh Singh, Julian Yarkony
http://arxiv.org/abs/1902.05659v1

• [cs.CV]Street Scene: A new dataset and evaluation protocol for video anomaly detection
Barathkumar Ramachandra, Michael Jones
http://arxiv.org/abs/1902.05872v1

• [cs.CV]TMAV: Temporal Motionless Analysis of Video using CNN in MPSoC
Somdip Dey, Amit K. Singh, Dilip K. Prasad, Klaus D. McDonald-Maier
http://arxiv.org/abs/1902.05657v1

• [cs.CV]Unsupervised shape and motion analysis of 3822 cardiac 4D MRIs of UK Biobank
Qiao Zheng, Hervé Delingette, Kenneth Fung, Steffen E. Petersen, Nicholas Ayache
http://arxiv.org/abs/1902.05811v1

• [cs.CY]Crime Analysis using Open Source Information
Sarwat Nizamani, Nasrullah Memon, Azhar Ali Shah, Sehrish Nizamani, Saad Nizamani, Imdad Ali Ismaili
http://arxiv.org/abs/1902.05684v1

• [cs.CY]On the computational models for the analysis of illicit activities
Sarwat Nizamani, Saad Nizamani, Sehrish Nizamani, Imdad Ali Ismaili
http://arxiv.org/abs/1902.05691v1

• [cs.CY]Who Watches the Watchmen: Exploring Complaints on the Web
Damilola Ibosiola, Ignacio Castro, Gianluca Stringhini, Steve Uhlig, Gareth Tyson
http://arxiv.org/abs/1902.05796v1

• [cs.DC]A Comparison of Random Task Graph Generation Methods for Scheduling Problems
Louis-Claude Canon, Mohamad El Sayah, Pierre-Cyrille Héam
http://arxiv.org/abs/1902.05808v1

• [cs.DC]A Scalable Framework for Distributed Object Tracking across a Many-camera Network
Aakash Khochare, Aravindhan K, Yogesh Simmhan
http://arxiv.org/abs/1902.05577v1

• [cs.DC]Distributed Processes and Scalability in Sub-networks of Large-Scale Networks
Abhinav Mishra
http://arxiv.org/abs/1902.05635v1

• [cs.DC]Optimizing the SSD Burst Buffer by Traffic Detection
Xuanhua Shi, Wei Liu, Ligang He, Hai Jin, Ming Li, Yong Chen
http://arxiv.org/abs/1902.05746v1

• [cs.DC]Spectrum: A Framework for Adapting Consensus Protocols
Balaji Arun, Sebastiano Peluso, Binoy Ravindran
http://arxiv.org/abs/1902.05873v1

• [cs.DS]Finding Nearest Neighbors in graphs locally
Abhinav Mishra
http://arxiv.org/abs/1902.05638v1

• [cs.GT]Competing Bandits: The Perils of Exploration under Competition
Guy Aridor, Kevin Liu, Aleksandrs Slivkins, Zhiwei Steven Wu
http://arxiv.org/abs/1902.05590v1

• [cs.IR]Interest-Related Item Similarity Model Based on Multimodal Data for Top-N Recommendation
Junmei Lv, Bin Song, Jie Guo, Xiaojiang Du, Mohsen Guizani
http://arxiv.org/abs/1902.05566v1

• [cs.IR]Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems
Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, Dawei Yin
http://arxiv.org/abs/1902.05570v1

• [cs.IT]Achieving Large Sum Rate and Good Fairness in MISO Broadcast Communication
Ji-You Huang, Hsiao-feng Francis Lu
http://arxiv.org/abs/1902.05640v1

• [cs.IT]Fog-Assisted Multi-User SWIPT Networks: Local Computing or Offloading
Haina Zheng, Ke Xiong, Pingyi Fan, Zhangdui Zhong, Khaled Ben Letaief
http://arxiv.org/abs/1902.05889v1

• [cs.IT]Multi-target Position and Velocity Estimation Using OFDM Communication Signals
Yinchuan Li, Xiaodong Wang, Zegang Ding
http://arxiv.org/abs/1902.05654v1

• [cs.IT]Solving Complex Quadratic Systems with Full-Rank Random Matrices
Shuai Huang, Sidharth Gupta, Ivan Dokmanić
http://arxiv.org/abs/1902.05612v1

• [cs.LG]A Convolutional Network for Sleep Stages Classification
Isaac Fernández-Varela, Elena Hernández-Pereira, Diego Alvarez-Estevez, Vicente Moret-Bonillo
http://arxiv.org/abs/1902.05748v1

• [cs.LG]Adversarially Approximated Autoencoder for Image Generation and Manipulation
Wenju Xu, Shawn Keshmiri, Guanghui Wang
http://arxiv.org/abs/1902.05581v1

• [cs.LG]AutoQB: AutoML for Network Quantization and Binarization on Mobile Devices
Qian Lou, Lantao Liu, Minje Kim, Lei Jiang
http://arxiv.org/abs/1902.05690v1

• [cs.LG]Can Intelligent Hyperparameter Selection Improve Resistance to Adversarial Examples?
Cody Burkard, Brent Lagesse
http://arxiv.org/abs/1902.05586v1

• [cs.LG]CrossNorm: Normalization for Off-Policy TD Reinforcement Learning
Aditya Bhatt, Max Argus, Artemij Amiranashvili, Thomas Brox
http://arxiv.org/abs/1902.05605v1

• [cs.LG]Deep Reinforcement Learning Based High-level Driving Behavior Decision-making Model in Heterogeneous Traffic
Zhengwei Bai, Baigen Cai, Wei Shangguan, Linguo Chai
http://arxiv.org/abs/1902.05772v1

• [cs.LG]Efficient Deep Learning of GMMs
Shirin Jalali, Carl Nuzman, Iraj Saniee
http://arxiv.org/abs/1902.05707v1

• [cs.LG]Fast Task-Aware Architecture Inference
Efi Kokiopoulou, Anja Hauth, Luciano Sbaiz, Andrea Gesmundo, Gabor Bartok, Jesse Berent
http://arxiv.org/abs/1902.05781v1

• [cs.LG]Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations
Dmitry Kobak, George Linderman, Stefan Steinerberger, Yuval Kluger, Philipp Berens
http://arxiv.org/abs/1902.05804v1

• [cs.LG]KINN: Incorporating Expert Knowledge in Neural Networks
Muhammad Ali Chattha, Shoaib Ahmed Siddiqui, Muhammad Imran Malik, Ludger van Elst, Andreas Dengel, Sheraz Ahmed
http://arxiv.org/abs/1902.05653v1

• [cs.LG]Learning to Adaptively Scale Recurrent Neural Networks
Hao Hu, Liqiang Wang, Guo-Jun Qi
http://arxiv.org/abs/1902.05696v1

• [cs.LG]Lipschitz Generative Adversarial Nets
Zhiming Zhou, Jiadong Liang, Yuxuan Song, Lantao Yu, Hongwei Wang, Weinan Zhang, Yong Yu, Zhihua Zhang
http://arxiv.org/abs/1902.05687v1

• [cs.LG]Quick and Easy Time Series Generation with Established Image-based GANs
Eoin Brophy, Zhengwei Wang, Tomas E. Ward
http://arxiv.org/abs/1902.05624v1

• [cs.LG]Reinforcement Learning Without Backpropagation or a Clock
James Kostas, Chris Nota, Philip S. Thomas
http://arxiv.org/abs/1902.05650v1

• [cs.LG]Robust Reinforcement Learning in POMDPs with Incomplete and Noisy Observations
Yuhui Wang, Hao He, Xiaoyang Tan
http://arxiv.org/abs/1902.05795v1

• [cs.LG]SVM-based Deep Stacking Networks
Jingyuan Wang, Kai Feng, Junjie Wu
http://arxiv.org/abs/1902.05731v1

• [cs.LG]The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the xAUC Metric
Nathan Kallus, Angela Zhou
http://arxiv.org/abs/1902.05826v1

• [cs.LG]WaveletFCNN: A Deep Time Series Classification Model for Wind Turbine Blade Icing Detection
Binhang Yuan, Chen Wang, Fei Jiang, Mingsheng Long, Philip S. Yu, Yuan Liu
http://arxiv.org/abs/1902.05625v1

• [cs.LO]Shepherding Hordes of Markov Chains
MIlan Ceska, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen
http://arxiv.org/abs/1902.05727v1

• [cs.MA]Privacy of Existence of Secrets: Introducing Steganographic DCOPs and Revisiting DCOP Frameworks
Viorel D. Silaghi, Marius C. Silaghi, René Mandiau
http://arxiv.org/abs/1902.05943v1

• [cs.NE]Deep Spiking Neural Network with Spike Count based Learning Rule
Jibin Wu, Yansong Chua, Malu Zhang, Qu Yang, Guoqi Li, Haizhou Li
http://arxiv.org/abs/1902.05705v1

• [cs.RO]Bi-directional Value Learning for Risk-aware Planning Under Uncertainty
Sung-Kyun Kim, Rohan Thakker, Ali-akbar Agha-mohammadi
http://arxiv.org/abs/1902.05698v1

• [cs.RO]Network Offloading Policies for Cloud Robotics: a Learning-based Approach
Sandeep Chinchali, Apoorva Sharma, James Harrison, Amine Elhafsi, Daniel Kang, Evgenya Pergament, Eyal Cidon, Sachin Katti, Marco Pavone
http://arxiv.org/abs/1902.05703v1

• [cs.RO]Robot Co-design: Beyond the Monotone Case
Luca Carlone, Carlo Pinciroli
http://arxiv.org/abs/1902.05880v1

• [cs.RO]Two-Stage Transfer Learning for Heterogeneous Robot Detection and 3D Joint Position Estimation in a 2D Camera Image using CNN
Justinas Miseikis, Inka Brijacak, Saeed Yahyanejad, Kyrre Glette, Ole Jakob Elle, Jim Torresen
http://arxiv.org/abs/1902.05718v1

• [cs.SI]Discovering Archetypes to Interpret Evolution of Individual Behavior
Kanika Narang, Austin Chung, Hari Sundaram, Snigdha Chaturvedi
http://arxiv.org/abs/1902.05567v1

• [cs.SI]Using Key Player Analysis as a Method for Examining the Role of Community Animators in Technology Adoption
Jomara Sandbulte, Jessica Kropczynski, John M. Carroll
http://arxiv.org/abs/1902.05630v1

• [math.CO]Universally Sparse Hypergraphs with Applications to Coding Theory
Chong Shangguan, Itzhak Tamo
http://arxiv.org/abs/1902.05903v1

• [math.OC]ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, Quoc Tran-Dinh
http://arxiv.org/abs/1902.05679v1

• [math.PR]Effective distribution of codewords for Low Density Parity Check Cycle codes in the presence of disorder
Roshan Warman, Iuliana Teodorescu, Razvan Teodorescu
http://arxiv.org/abs/1902.05786v1

• [math.ST]Distributionally Robust Inference for Extreme Value-at-Risk
Robert Yuen, Stilian Stoev, Dan Cooley
http://arxiv.org/abs/1902.05853v1

• [math.ST]Dualizing Le Cam's method, with applications to estimating the unseens
Yury Polyanskiy, Yihong Wu
http://arxiv.org/abs/1902.05616v1

• [math.ST]Quantile double autoregression
Qianqian Zhu, Guodong Li
http://arxiv.org/abs/1902.05813v1

• [physics.med-ph]Estimation of blood oxygenation with learned spectral decoloring for quantitative photoacoustic imaging (LSD-qPAI)
Janek Gröhl, Thomas Kirchner, Tim Adler, Lena Maier-Hein
http://arxiv.org/abs/1902.05839v1

• [physics.soc-ph]When Celebrities Speak: A Nationwide Twitter Experiment Promoting Vaccination in Indonesia
Vivi Alatas, Arun G. Chandrasekhar, Markus Mobius, Benjamin A. Olken, Cindy Paladines
http://arxiv.org/abs/1902.05667v1

• [q-bio.QM]Critical Transitions in Intensive Care Units: A Sepsis Case Study
Pejman F. Ghalati, Satya S. Samal, Jayesh S. Bhat, Robert Deisz, Gernot Marx, Andreas Schuppert
http://arxiv.org/abs/1902.05764v1

• [q-fin.PR]Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes
Ali Hirsa, Tugce Karatas, Amir Oskoui
http://arxiv.org/abs/1902.05810v1

• [quant-ph]Memory effects teleportation of quantum Fisher information under decoherence
Y. N. Guo, K. zeng, P. X. Chen
http://arxiv.org/abs/1902.05668v1

• [stat.AP]BAREB: A Bayesian repulsive biclustering model for periodontal data
Yuliang Li, Yanxun Xu, Fangzheng Xie, Dipankar Bandyopadhyay
http://arxiv.org/abs/1902.05680v1

• [stat.ME]Asymptotically exact data augmentation: models, properties and algorithms
Maxime Vono, Nicolas Dobigeon, Pierre Chainais
http://arxiv.org/abs/1902.05754v1

• [stat.ME]Structured Shrinkage Priors
Maryclare Griffin, Peter D. Hoff
http://arxiv.org/abs/1902.05106v2

• [stat.ML]Classification with unknown class conditional label noise on non-compact feature spaces
Henry W J Reeve, Ata Kaban
http://arxiv.org/abs/1902.05627v1

• [stat.ML]Exponentially-Modified Gaussian Mixture Model: Applications in Spectroscopy
Sebastian Ament, John Gregoire, Carla Gomes
http://arxiv.org/abs/1902.05601v1

• [stat.ML]Translation Insensitivity for Deep Convolutional Gaussian Processes
Vincent Dutordoir, Mark van der Wilk, Artem Artemev, Marcin Tomczak, James Hensman
http://arxiv.org/abs/1902.05888v1

相关文章

网友评论

      本文标题:今日学术视野(2019.2.19)

      本文链接:https://www.haomeiwen.com/subject/cuityqtx.html