美文网首页
Keras 多输入、多输出、多loss模型构建

Keras 多输入、多输出、多loss模型构建

作者: youyuge | 来源:发表于2020-07-01 16:52 被阅读0次
    • Keras在会为Model的每一个输出构建一个loss,这些loss之间无法交互。同时,Model中每一个output,都必须在fit()方法中有对应的y_true。因此,数据输入的label数==model.outputs数==loss数。
    • 而Model的每一个输入,都必须在fit()方法中有对应的x。即len(x in model.fit())==len(model.inputs)

    https://blog.csdn.net/AZRRR/article/details/90380372

    # 终于搞懂了loss之间的对应关系
    model = Model(inputs=[img, tgt], outputs=[out1, out2])   
    #定义网络的时候会给出输入和输出
    model.compile(optimizer=Adam(lr=lr), loss=[
                          losses.cc3D(), losses.gradientLoss('l2')], loss_weights=[1.0, reg_param]) 
    #训练网络的时候指定loss,如果是多loss,loss weights分别对应前面的每个loss的权重,最后输出loss的和
    train_loss = model.train_on_batch(
                [x1,x2], [y_true_1, y_true_2]) 
    

    开始训练,loss中的对应关系是:
    推理输出out1与y_true_1算cc3D_loss,推理输出out2与y_true_2算gradientloss。
    而模型的两个输入img、tgt对应的分别是数据x1,x2。

    数据生成器写法:

    Keras的数据生成器每次生成并返回的必须是一个tuple,而python函数返回的 x,y会被默认包装为tuple。

    The output of the generator must be either
                    - a tuple `(inputs, targets)`
                    - a tuple `(inputs, targets, sample_weights)`.
    

    因此单输入单输出的模型,数据生成器每次可以

    def .....
        while True:
            yield x,y_true
    

    或者,当有多输入多输出时:

    def .....
        While True:
            yield [x1,x2,...], [label1,label2,...]
    

    小结:

    每次返回的x1,....,xn都会被自动喂入model.input中,故长度必须一致。之后模型进行推理,根据model.output获取m个output推理值,每一个output都会去调用相应的loss函数,并去获取得到对应的真实的label值,进行loss的计算。因此有m个label,对应了m个model的output数,对应了loss的数目。

    也可以使用dict包裹:

                def generate_arrays_from_file(path):
                    while True:
                        with open(path) as f:
                            for line in f:
                                # create numpy arrays of input data
                                # and labels, from each line in the file
                                x1, x2, y = process_line(line)
                                yield ({'input_1': x1, 'input_2': x2}, {'output': y})
                model.fit_generator(generate_arrays_from_file('/my_file.txt'),
                                    steps_per_epoch=10000, epochs=10)
    

    实战案例:

    • 多输入,单输出,配合Dataset API:
    if __name__ == '__main__':
    
        a = Input(shape=(368, 368, 3))
        a2 = Input(shape=(368, 368, 4))
    
        conv1 = layers.Conv2D(64, 3)(a)
        conv2 = layers.Conv2D(64, 3)(conv1)
        maxpool = layers.MaxPooling2D(pool_size=8, strides=8, padding='same')(conv2)
        conv3 = layers.Conv2D(5, 1)(maxpool)
    
        model = keras.Model(inputs=[a,a2], outputs=[conv3])
    
        model.compile(optimizer=keras.optimizers.SGD(lr=0.05),
                      loss=keras.losses.mean_squared_error)
    
        import numpy as np
    
        data = np.random.rand(10, 368, 368, 3)
        data2 = np.random.rand(10, 368, 368, 4)
        label = np.random.rand(10, 46, 46, 5)
    
        dataset = tf.data.Dataset.from_tensor_slices((data,data2, label)).batch(5).repeat()
    
        iterator = dataset.make_one_shot_iterator()
        # print(next(iterator))
        # print(K.get_session().run(iterator.get_next())[1][0])
    
        def mannual_iter(iter_):
            next_batch = iter_.get_next()
    
            while True:
                img, img2, label = K.get_session().run(next_batch)
                yield [img, img2], label
                # yield [data,data2],label
    
        with K.get_session() as sess:
            model.fit_generator(mannual_iter(iterator), epochs=3, steps_per_epoch=5,
                                workers=1,  # This is important
                                verbose=1
                                )
    
    • 单输入,多输出:
    if __name__ == '__main__':
    
        a = Input(shape=(368, 368, 3))
        a2 = Input(shape=(368, 368, 4))
    
        conv1 = layers.Conv2D(64, 3)(a)
        conv2 = layers.Conv2D(64, 3)(conv1)
        maxpool = layers.MaxPooling2D(pool_size=8, strides=8, padding='same')(conv2)
        conv3 = layers.Conv2D(5, 1)(maxpool)
    
        model = keras.Model(inputs=[a], outputs=[maxpool, conv3])
        model.summary()
    
        model.compile(optimizer=keras.optimizers.SGD(lr=0.05),
                      loss=[keras.losses.mean_squared_error,
                            keras.losses.mean_squared_error,
                            ],
                      loss_weights=[0.1,1])
    
        import numpy as np
    
        data = np.random.rand(10, 368, 368, 3)
        data2 = np.random.rand(10, 368, 368, 4)
        label_maxpool = np.random.rand(10, 46, 46, 64)
        label = np.random.rand(10, 46, 46, 5)
    
        dataset = tf.data.Dataset.from_tensor_slices((data, label_maxpool, label)).batch(5).repeat()
    
        iterator = dataset.make_one_shot_iterator()
        # print(next(iterator))
        # print(K.get_session().run(iterator.get_next())[1][0])
    
        def mannual_iter(iter_):
            next_batch = iter_.get_next()
    
            while True:
                img, label_maxpool, label = K.get_session().run(next_batch)
                yield [img], [label_maxpool, label]
                # yield [data,data2],label
    
        with K.get_session() as sess:
            model.fit_generator(mannual_iter(iterator), epochs=3, steps_per_epoch=5,
                                workers=1,  # This is important
                                verbose=1
                                )
    

    相关文章

      网友评论

          本文标题:Keras 多输入、多输出、多loss模型构建

          本文链接:https://www.haomeiwen.com/subject/cwthqktx.html