美文网首页Python
2019-06-05 collections

2019-06-05 collections

作者: 沙滩印 | 来源:发表于2019-06-05 16:02 被阅读0次

    collections是Python内建的一个集合模块,提供了许多有用的集合类。

    namedtuple

    我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:
    >>> p = (1, 2)
    但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
    定义一个class又小题大做了,这时,namedtuple就派上了用场:

    >>> from collections import namedtuple
    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> p = Point(1, 2)
    >>> p.x
    1
    >>> p.y
    2
    

    namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。
    这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。

    可以验证创建的Point对象是tuple的一种子类:

    >>> isinstance(p, Point)
    True
    >>> isinstance(p, tuple)
    True
    

    类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

    # namedtuple('名称', [属性list]):
    Circle = namedtuple('Circle', ['x', 'y', 'r'])
    

    deque

    使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
    deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

    >>> from collections import deque
    >>> q = deque(['a', 'b', 'c'])
    >>> q.append('x')
    >>> q.appendleft('y')
    >>> q
    deque(['y', 'a', 'b', 'c', 'x'])
    

    deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

    defaultdict

    使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:

    >>> from collections import defaultdict
    >>> dd = defaultdict(lambda: 'N/A')
    >>> dd['key1'] = 'abc'
    >>> dd['key1'] # key1存在
    'abc'
    >>> dd['key2'] # key2不存在,返回默认值
    'N/A'
    

    注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。
    除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。

    OrderedDict

    使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
    如果要保持Key的顺序,可以用OrderedDict:

    >>> from collections import OrderedDict
    >>> d = dict([('a', 1), ('b', 2), ('c', 3)])
    >>> d # dict的Key是无序的
    {'a': 1, 'c': 3, 'b': 2}
    >>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
    >>> od # OrderedDict的Key是有序的
    OrderedDict([('a', 1), ('b', 2), ('c', 3)])
    

    注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

    >>> od = OrderedDict()
    >>> od['z'] = 1
    >>> od['y'] = 2
    >>> od['x'] = 3
    >>> list(od.keys()) # 按照插入的Key的顺序返回
    ['z', 'y', 'x']
    

    OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:

    from collections import OrderedDict
    
    class LastUpdatedOrderedDict(OrderedDict):
    
        def __init__(self, capacity):#初始化
            super(LastUpdatedOrderedDict, self).__init__()
            #super() 函数是用于调用父类(超类)的一个方法。相当于super().__init__()
            self._capacity = capacity
    
        def __setitem__(self, key, value):
            containsKey = 1 if key in self else 0 #传入的key如果前面有重名的containsKey为1否则为0
            #下面的if只在队列已满而且key不重名 执行
            if len(self) - containsKey >= self._capacity:
                last = self.popitem(last=False)
                print('remove:', last)
            if containsKey:#遇到重名的key不管队列是不是满的先删除key相同的元素
                del self[key]
                print('set:', (key, value))
            else:
                print('add:', (key, value))
            OrderedDict.__setitem__(self, key, value)#将(key,value)添加到Dict中,这也是继承了父类的方法。
    

    ChainMap

    ChainMap可以把一组dict串起来并组成一个逻辑上的dict。ChainMap本身也是一个dict,但是查找的时候,会按照顺序在内部的dict依次查找。
    什么时候使用ChainMap最合适?举个例子:应用程序往往都需要传入参数,参数可以通过命令行传入,可以通过环境变量传入,还可以有默认参数。我们可以用ChainMap实现参数的优先级查找,即先查命令行参数,如果没有传入,再查环境变量,如果没有,就使用默认参数。

    下面的代码演示了如何查找user和color这两个参数:

    from collections import ChainMap
    import os, argparse
    
    # 构造缺省参数:
    defaults = {
        'color': 'red',
        'user': 'guest'
    }
    
    # 构造命令行参数:
    parser = argparse.ArgumentParser()
    parser.add_argument('-u', '--user')
    parser.add_argument('-c', '--color')
    namespace = parser.parse_args()
    command_line_args = { k: v for k, v in vars(namespace).items() if v }
    
    # 组合成ChainMap:
    combined = ChainMap(command_line_args, os.environ, defaults)
    
    # 打印参数:
    print('color=%s' % combined['color'])
    print('user=%s' % combined['user'])
    没有任何参数时,打印出默认参数:
    
    $ python3 use_chainmap.py 
    color=red
    user=guest
    当传入命令行参数时,优先使用命令行参数:
    
    $ python3 use_chainmap.py -u bob
    color=red
    user=bob
    
    同时传入命令行参数和环境变量,命令行参数的优先级较高:
    
    $ user=admin color=green python3 use_chainmap.py -u bob
    color=green
    user=bob
    

    Counter

    Counter是一个简单的计数器,例如,统计字符出现的个数:

    >>> from collections import Counter
    >>> c = Counter()
    >>> for ch in 'programming':
    ...     c[ch] = c[ch] + 1
    ...
    >>> c
    Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
    

    Counter实际上也是dict的一个子类,上面的结果可以看出,字符'g'、'm'、'r'各出现了两次,其他字符各出现了一次。

    小结

    collections模块提供了一些有用的集合类,可以根据需要选用。

    相关文章

      网友评论

        本文标题:2019-06-05 collections

        本文链接:https://www.haomeiwen.com/subject/cxksxctx.html