image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
import torchvision.datasets as datasets
import torchvision
import torch
import numpy as np
import cv2
def show_object_rect(image: np.ndarray, bndbox):
pt1 = bndbox[:2]
pt2 = bndbox[2:]
image_show = image
return cv2.rectangle(image_show, pt1, pt2, (0,255,255), 2)
def show_object_name(image: np.ndarray, name: str, p_tl):
return cv2.putText(image, name, p_tl, 1, 1, (255, 0, 0))
voc_trainset = datasets.VOCDetection('/media/weipenghui/Extra/VOC/VOC_Detection_2012',year='2012', image_set='train', download=False)
print('-'*40)
print('VOC2012-trainval')
print(len(voc_trainset))
for i, sample in enumerate(voc_trainset, 1):
image, annotation = sample[0], sample[1]['annotation']
objects = annotation['object']
show_image = np.array(image)
print('{} object:{}'.format(i, len(objects)))
if not isinstance(objects,list):
object_name = objects['name']
object_bndbox = objects['bndbox']
x_min = int(object_bndbox['xmin'])
y_min = int(object_bndbox['ymin'])
x_max = int(object_bndbox['xmax'])
y_max = int(object_bndbox['ymax'])
show_image = show_object_rect(show_image, (x_min, y_min, x_max, y_max))
show_image =show_object_name(show_image, object_name, (x_min, y_min))
else:
for j in objects:
object_name = j['name']
object_bndbox = j['bndbox']
x_min = int(object_bndbox['xmin'])
y_min = int(object_bndbox['ymin'])
x_max = int(object_bndbox['xmax'])
y_max = int(object_bndbox['ymax'])
show_image = show_object_rect(show_image, (x_min, y_min, x_max, y_max))
show_image = show_object_name(show_image, object_name, (x_min, y_min))
cv2.imshow('image', show_image)
cv2.waitKey(0)
print(voc_trainset)
print('Down load ok')
网友评论