美文网首页
异常值检测算法--孤立森林(Isolation Forest)

异常值检测算法--孤立森林(Isolation Forest)

作者: 王金松 | 来源:发表于2019-05-19 20:45 被阅读0次

算法

该方法是一维或多维特征空间中大数据集的非参数方法,其中的一个重要概念是孤立数。
孤立数是孤立数据点所需的拆分数。通过以下步骤确定此分割数:
随机选择要分离的点“a”;
选择在最小值和最大值之间的随机数据点“b”,并且与“a”不同;
如果“b”的值低于“a”的值,则“b”的值变为新的下限;
如果“b”的值大于“a”的值,则“b”的值变为新的上限;
只要在上限和下限之间存在除“a”之外的数据点,就重复该过程;
与孤立非异常值相比,它需要更少的分裂来孤立异常值,即异常值与非异常点相比具有更低的孤立数。因此,如果数据点的孤立数低于阈值,则将数据点定义为异常值。
阈值是基于数据中异常值的估计百分比来定义的,这是异常值检测算法的起点

案例

image.png

相关文章

网友评论

      本文标题:异常值检测算法--孤立森林(Isolation Forest)

      本文链接:https://www.haomeiwen.com/subject/dbzqzqtx.html