优秀的程序猿解题之LeetCode 第一题:Two Sum

作者: efan | 来源:发表于2019-03-06 19:56 被阅读0次

Tips:所有代码实现包含三种语言(java、c++、python3)

题目

Given an array of integers, return indices of the two numbers such that they add up to a specific target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

给定数组,返回数组中相加等于给定数的两个数的位置。

可假设仅有一个解,注意数组中的每个数仅可使用一次。

样例

Given nums = [2, 7, 11, 15], target = 9,

Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].

解题

首先看到:

输入:一个数组(nums)和一个数(target);

输出:由数组(nums)的两个索引组成的新数组,其中这两个索引对应的数满足相加等于数(target);

优秀的程序猿很快理解了问题,然后迅速的把问题转化成计算机好理解的问题:

对于数组(nums)中每个数(temp),求数组中是否存在数x(x满足x = target - temp);

不假思索,优秀的程序猿瞬间想到了暴力遍历法

对数组每个数,遍历查找数组中此数之后的数是否存在此数的补集。

注意:当我们找到一个解之后就可以立即返回了,因为题目中提到了可假设仅有一个解

// java
/* 
Runtime: 20 ms, faster than 41.25% of Java online submissions for Two Sum.
Memory Usage: 38.5 MB, less than 44.37% of Java online submissions for Two Sum.
*/
public int[] twoSum(int[] nums, int target){
    int length = nums.length;
    for (int i = 0; i < length - 1; i++){
        for (int j = i + 1; j < length; j++){
            if (nums[i] + nums[j] == target){
                return new int[]{i, j};
            }
        }
    }
    return null;
}
// c++
/*
Runtime: 136 ms, faster than 36.44% of C++ online submissions for Two Sum.
Memory Usage: 9.5 MB, less than 79.36% of C++ online submissions for Two Sum.
*/
vector<int> twoSum(vector<int>& nums, int target) {
    for(int i = 0; i < nums.size()-1; i++)
    {
        for(int j = i+1; j < nums.size(); j++)
        {
            if(nums[i] + nums[j] == target){
                return {i, j};
            }
        }
    }
    return {};
}
# python3
# Runtime: 5528 ms, faster than 11.87% of Python3 online submissions for Two Sum.
# Memory Usage: 13.5 MB, less than 49.67% of Python3 online submissions for Two Sum.
def twoSum(self, nums: List[int], target: int) -> List[int]:
    for i in range(len(nums)-1):
        for j in range(i+1, len(nums)):
            if nums[i] + nums[j] == target:
                return [i,j]
    return None

不幸的是,可以看到,这个方法的表现比较差,仅 Runtime 来说,处理中下游,优秀的程序猿当然不仅满足于此;

优秀的程序猿继续思考着优化方案,再看一遍问题:

对于数组(nums)中每个数(temp),求数组中是否存在数x(x满足x = target - temp);

优秀的程序猿此时敏感得发现这其中包含一个非有序查找问题,对于非有序查找问题的立马联想到了map;

想到这里,第二个解决方案就出炉了:

  1. 将数组转化成一个map,其中键为数组中的数,值为该数对应得索引值;
  2. 对于数组(nums)中每个数(temp),查找map中是否存在等于(target-temp)的键,如果存在,返回该键对应的值以及当前数的索引值;

注意:如果当前数等于target的一半,那么当前数的补集就是其本身,因为题目要求数组中的每个数仅可使用一次,此时需判断当前数的补集不是其本身。

// java
/*
Runtime: 3 ms, faster than 99.77% of Java online submissions for Two Sum.
Memory Usage: 39.9 MB, less than 5.16% of Java online submissions for Two Sum.
*/
public int[] twoSum(int[] nums, int target){
    int length = nums.length;
    Map<Integer, Integer> numsMap = new HashMap<>();
    for (int i = 0; i < length; i++){
        numsMap.put(nums[i], i);
    }
    for (int i = 0; i< length; i++){
        int complement = target - nums[i];
        if (numsMap.containsKey(complement) && numsMap.get(complement) != i){
            return new int[]{i, numsMap.get(complement)};
        }
    }
    return null;
}
// c++
/*
Runtime: 12 ms, faster than 97.81% of C++ online submissions for Two Sum.
Memory Usage: 10.6 MB, less than 12.73% of C++ online submissions for Two Sum.
*/
vector<int> twoSum(vector<int>& nums, int target) {
    unordered_map<int, int> numsMap; 
    for(int i = 0; i < nums.size(); i++)
    {
        numsMap[nums[i]] = i;
    }
    for(int i = 0; i < nums.size(); i++)
    {
        if(numsMap.count(target-nums[i]) && numsMap[target-nums[i]] != i){
            return {numsMap[target-nums[i]], i};
        }
    }
    return {};
}
# python3
# Runtime: 40 ms, faster than 73.58% of Python3 online submissions for Two Sum.
# Memory Usage: 15.2 MB, less than 5.08% of Python3 online submissions for Two Sum.
def twoSum(self, nums: List[int], target: int) -> List[int]:
    nums_dict = {}
    for i, num in enumerate(nums):
        nums_dict[num] = i
    for i, num in enumerate(nums):
        if (target-num) in nums_dict and i != nums_dict[target-num]:
             return [i, nums_dict[target-num]]
    return None

不愧是一个优秀的程序猿,这个Runtime表现让我们很是欣慰(Memory Usage 很大是因为我们使用了额外的map 存储数据),忍不住的想要多看几遍这优美的代码;

突然,优秀的程序猿发现了在上面的解法中存在两个问题,

  1. 在查找每个数的补集是否存在的时候面向的是整个map,虽然对于 hashmap 来说这不太影响性能,但是也多了一项判断补集不是其本身啊!!!
  2. 算法中先实现了将数据填充至map,然后再逐一查询,那么时间复杂度是O(2n),虽然O(n)和O(2n)是基本一样的,但是能不能再优化一下呢?可以做到边填充边搜索吗???

优秀的程序猿不容许这样的瑕疵存在,经过短暂的思考,又一个思路浮现了出来:

  1. 创建一个空 map;
  2. 对于数组(nums)中每个数(temp),查找map中是否存在等于(target-temp)的键,如果存在,返回该键对应的值以及当前数的索引值;如果不存在,将该数作为键,其索引作为值,放入map中;

在这个思路中,相当于对于数组中的每个数,其补集的搜索范围是数组中位于此数之前的数,即做到了边填充边搜索,又避免了搜索范围的浪费。

// java
/*
Runtime: 3 ms, faster than 99.77% of Java online submissions for Two Sum.
Memory Usage: 38.7 MB, less than 36.97% of Java online submissions for Two Sum.
*/
public int[] twoSum(int[] nums, int target){
    int length = nums.length;
    Map<Integer, Integer> numsMap = new HashMap<>();
    for (int i = 0; i < length; i++) {
        int complement = target - nums[i];
        if (numsMap.containsKey(complement)){
            return new int[]{i, numsMap.get(complement)};
        }
        numsMap.put(nums[i], i);
    }
    return null;
}
// c++
/*
Runtime: 12 ms, faster than 97.81% of C++ online submissions for Two Sum.
Memory Usage: 10.5 MB, less than 21.80% of C++ online submissions for Two Sum.
*/
vector<int> twoSum(vector<int>& nums, int target) {
    unordered_map<int, int> numsMap; 
    for(int i = 0; i < nums.size(); i++)
    {
        if(numsMap.count(target-nums[i])){
            return {numsMap[target-nums[i]], i};
        }
        numsMap[nums[i]] = i;
    }
    return {};
}
# python3
# Runtime: 40 ms, faster than 73.58% of Python3 online submissions for Two Sum.
# Memory Usage: 14.4 MB, less than 5.08% of Python3 online submissions for Two Sum.
def twoSum(self, nums: List[int], target: int) -> List[int]:
    nums_dict = {}
    for i, num in enumerate(nums):
        if (target-num) in nums_dict:
            return [nums_dict[target-num], i]
        nums_dict[num] = i
    return None

优秀的程序猿又严谨得审视了几遍代码,满意得合上了电脑。。。

相关文章

网友评论

    本文标题:优秀的程序猿解题之LeetCode 第一题:Two Sum

    本文链接:https://www.haomeiwen.com/subject/ddoxpqtx.html