美文网首页
简单BiRNN

简单BiRNN

作者: yanghedada | 来源:发表于2018-09-08 10:06 被阅读91次
    # -*- coding: utf-8 -*-
    """
    Created on Sat Apr 28 13:00:53 2018
    
    @author: yanghe
    """
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import numpy as np
    #mnist = input_data.read_data_sets(r'E:\python\mnist_data', one_hot=True)
    learning_rate = 0.01
    training_steps = 1000
    batch_size = 128
    display_step = 10
    
    n_input = 28
    n_steps = 30
    n_hidden = 128
    n_classes = 10
    
    x = tf.placeholder(tf.float32, [1, n_steps,n_input])
    y = tf.placeholder(tf.float32, [None, n_classes])
    
    def BiRNN(x):
        with tf.name_scope('Bi_RNN'):
            weights = tf.get_variable('weights', shape=[2*n_hidden, n_classes], initializer=tf.truncated_normal_initializer(stddev=0.1))
            biases = tf.get_variable('biases', shape=[n_classes], initializer=tf.truncated_normal_initializer(stddev=0.1))
            #x = tf.reshape(x, [-1, n_steps,n_input])
            x = tf.transpose(x, [1, 0, 2])
            x = tf.reshape(x, [-1, n_input])
            x = tf.split(x, n_steps)
            print(x)
            lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
            lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
            outputs, _, _ = tf.contrib.rnn.static_bidirectional_rnn(lstm_fw_cell,
                                                                    lstm_bw_cell,
                                                                    x,
                                                                    dtype=tf.float32)
            print(outputs[-1].shape)
        return tf.matmul(outputs[-1], weights) + biases
    with tf.variable_scope("pred") as scope:
        #scope.reuse_variables()
        #pred = model(input_data,on_training)
        y_ = BiRNN(x)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_, labels=y))
    train_op = tf.train.AdamOptimizer(learning_rate).minimize(cost)
    
    correct_pred = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    
    with tf.Session() as sess :
            tf.global_variables_initializer().run()
    #==============================================================================
    #         validate_feed  = {x : mnist.validation.images[:200],y:mnist.validation.labels[:200]}
    #         test_feed = {x:mnist.test.images[:200] , y:mnist.test.labels[:200]}
    #         every_tranin = int(mnist.train.num_examples / batch_size ) 
    #         for i in range(training_steps):
    #             for j in range(every_tranin):
    #                 bx , by = mnist.train.next_batch(batch_size)
    #                 _ = sess.run(train_op, feed_dict={x:bx , y:by})
    #             #if i % 2 == 0 :
    #                 validate_acc = sess.run([accuracy], feed_dict=validate_feed)
    #                 print("After %d , validation accuracy is %s " % (i,  validate_acc))
    #         test_acc=sess.run(accuracy,feed_dict=test_feed)
    #         print(("After %d training step(s), test accuracy using average model is %.2f" %(training_steps, test_acc)))    
    # 
    #==============================================================================
    
    
    
    
    
    
    
    
    
    
    
    

    相关文章

      网友评论

          本文标题:简单BiRNN

          本文链接:https://www.haomeiwen.com/subject/deskgftx.html