functools模块可以作用于所有的可以被调用的对象,包括函数 定义了__call__方法的类等
1 functools.cmp_to_key(func)
将比较函数(接受两个参数,通过比较两个参数的大小返回负值,0,或者正数)转换为key function(返回一个值用来比较或者排序的可调用对象),
例如: sorted(iterable, functools.cmp_to_key(locale.strcoll))

2 @functools.lru_cache(maxsize=128, typed=False)
首先这是一个装饰器
其次,介绍一下LRU算法:
LRU是最常用的缓存算法,全称叫“Least Recently Used”,顾名思义,就是在缓存miss 并且缓存空间已满的时候,将最久没访问过的数据删除从而腾出空间。
然后,说一下这个装饰器的两个参数的含义:
maxsize: 表示缓存大小,如果设置为None,表示不限制,设置为0表示不启用缓存机制
typed:如果设置为True,则该装饰器所装饰的函数的参数即使值相等(比如说 3 == 3.0 ),但类型不同(一个是整型一个是浮点),也会被区分对待为不同的缓存
然后,说明一下这个装饰器对所装饰的函数的要求,
1 函数的参数接收的值必须是不可变对象,像字符串,数字,元组等都属于此列
2 其次函数返回的对象最好也是不可变对象,当然这一点
来一个栗子:

3 @functools.total_ordering
首先这是一个类装饰器,这个类装饰器要求它所定义的类中必须定义:
1 小于__lt__(), 小于等于__le__(),大于__gt__(),大于等于__ge__()中的一个
2 还要定义等于__eq__()方法。
只要我们按照要求定义了这些方法,该装饰器就会为我们完成其余的比较排序方法 。
4 functools.partial(func, *args, **keywords)
类似于这样:

实际上就是给某个函数加上几个固定参数然后返回一个新的函数,对于多个对象更新相同的值来说可以用到。比如:

5 class functools.partialmethod(func, *args, **keywords)
作用类似于上面的partial函数,但这个方法作用于类的方法,返回的是方法而不是函数。

6 functool.update_wrapper(wrapper, wrapped[, assigned][, updated])
functools.wraps(wrapped[, assigned][, updated])
在python中,当一个函数被装饰器装饰后,这个函数名字对应的函数对象实际上是那个装饰器函数,也就是该函数名对应的的__name__以及__doc__实际上已经改变了,这就导致很难调试。而update_wrapper以及wraps就是用来解决这个问题。



网友评论