每周一个 Python 模块 | functools

作者: yongxinz | 来源:发表于2018-11-15 12:38 被阅读12次

    functools 是 Python 中很简单但也很重要的模块,主要是一些 Python 高阶函数相关的函数。 该模块的内容并不多,看 官方文档 也就知道了。

    说到高阶函数,这是函数式编程范式中很重要的一个概念,简单地说, 就是一个可以接受函数作为参数或者以函数作为返回值的函数,因为 Python 中函数是一类对象, 因此很容易支持这样的函数式特性。

    functools 模块中函数只有 cmp_to_keypartialreducetotal_orderingupdate_wrapperwrapslru_cache 这几个:

    被发配边疆的 reduce

    这个 functools.reduce 就是 Python 2 内建库中的 reduce,它之所以出现在这里就是因为 Guido 的独裁,他并不喜欢函数式编程中的“map-reduce”概念,因此打算将 mapreduce 两个函数移出内建函数库,最后在社区的强烈反对中将 map 函数保留在了内建库中, 但是 Python 3 内建的 map 函数返回的是一个迭代器对象,而 Python 2 中会 eagerly 生成一个 list,使用时要多加注意。

    该函数的作用是将一个序列归纳为一个输出,其原型如下:

    reduce(function, sequence, startValue)
    

    使用示例:

    >>> def foo(x, y):
    ...     return x + y
    ...
    >>> l = range(1, 10)
    >>> reduce(foo, l)
    45
    >>> reduce(foo, l, 10)
    55
    

    偏函数 partialpartialmethod

    用于创建一个偏函数,它用一些默认参数包装一个可调用对象,返回结果是可调用对象,并且可以像原始对象一样对待,这样可以简化函数调用。

    一个简单的使用示例:

    from functools import partial
    
    def add(x, y):
        return x + y
    
    add_y = partial(add, 3)  # add_y 是一个新的函数
    add_y(4) # 7
    

    一个很实用的例子:

    def json_serial_fallback(obj):
        """
        JSON serializer for objects not serializable by default json code
        """
        if isinstance(obj, (datetime.datetime, datetime.date)):
            return str(obj)
        if isinstance(obj, bytes):
            return obj.decode("utf-8")
        raise TypeError ("%s is not JSON serializable" % obj)
    
    json_dumps = partial(json.dumps, default=json_serial_fallback)
    

    可以在 json_serial_fallback 函数中添加类型判断来指定如何 json 序列化一个 Python 对象

    partialmethod 是 Python 3.4 中新引入的装饰器,作用基本类似于 partial, 不过仅作用于方法。举个例子就很容易明白:

    class Cell(object):
        def __init__(self):
            self._alive = False
        @property
        def alive(self):
            return self._alive
        def set_state(self, state):
            self._alive = bool(state)
    
        set_alive = partialmethod(set_state, True)
        set_dead = partialmethod(set_state, False)
    
    c = Cell()
    c.alive         # False
    c.set_alive()
    c.alive         # True
    

    在 Python 2 中使用 partialmethod 可以这样定义:

    # Code from https://gist.github.com/carymrobbins/8940382
    from functools import partial
    
    class partialmethod(partial):
        def __get__(self, instance, owner):
            if instance is None:
                return self
            return partial(self.func, instance,
                           *(self.args or ()), **(self.keywords or {}))
    

    装饰器相关

    说到“接受函数为参数,以函数为返回值”,在 Python 中最常用的当属装饰器了。 functools 库中装饰器相关的函数是 update_wrapperwraps,还搭配 WRAPPER_ASSIGNMENTSWRAPPER_UPDATES 两个常量使用,作用就是消除 Python 装饰器的一些负面作用。

    wraps

    例:

    def decorator(func):
        def wrapper(*args, **kwargs):
            return func(*args, **kwargs)
        return wrapper
    
    @decorator
    def add(x, y):
        return x + y
    
    add     # <function __main__.wrapper>
    

    可以看到被装饰的函数的名称,也就是函数的 __name__ 属性变成了 wrapper, 这就是装饰器带来的副作用,实际上add 函数整个变成了 decorator(add),而 wraps 装饰器能消除这些副作用:

    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            return func(*args, **kwargs)
        return wrapper
    
    @decorator
    def add(x, y):
        return x + y
    
    add     # <function __main__.add>
    

    更正的属性定义在 WRAPPER_ASSIGNMENTS 中:

    >>> functools.WRAPPER_ASSIGNMENTS
    ('__module__', '__name__', '__doc__')
    >>> functools.WRAPPER_UPDATES
    ('__dict__',)
    

    update_wrapper

    update_wrapper 的作用与 wraps 类似,不过功能更加强大,换句话说,wraps 其实是 update_wrapper 的特殊化,实际上 wraps(wrapped) 相当于 partial(update_wrapper, wrapped=wrapped, **kwargs)

    因此,上面的代码可以用 update_wrapper 重写如下:

    def decorator(func):
        def wrapper(*args, **kwargs):
            return func(*args, **kwargs)
        return update_wrapper(wrapper, func)
    

    用于比较的 cmp_to_keytotal_ordering

    cmp_to_key

    list.sort 和 内建函数 sorted 中都有一个 key 参数,这个参数用来指定取元素的什么值进行比较,例如按字符串元素的长度进行比较:

    >>> x = ['hello','abc','iplaypython.com']
    >>> x.sort(key=len)
    >>> x
    ['abc', 'hello', 'iplaypython.com']
    

    也就是说排序时会先对每个元素调用 key 所指定的函数,然后再排序。同时,sortedlist.sort 还提供了 cmp 参数来指定如何比较两个元素,但是在 Python 3 中该参数被去掉了。

    cmp_to_key 是 Python 2.7 中新增的函数,用于将比较函数转换为 key 函数, 这样就可以应用在接受 key 函数为参数的函数中。比如 sorted()min()max()heapq.nlargest()itertools.groupby() 等。

    sorted(range(5), key=cmp_to_key(lambda x, y: y-x))      # [4, 3, 2, 1, 0]
    

    total_ordering

    total_ordering 同样是 Python 2.7 中新增函数,用于简化比较函数的写法。如果你已经定义了__eq__ 方法,以及 __lt____le____gt__ 或者 __ge__() 其中之一, 即可自动生成其它比较方法。官方示例:

    @total_ordering
    class Student:
        def __eq__(self, other):
            return ((self.lastname.lower(), self.firstname.lower()) ==
                    (other.lastname.lower(), other.firstname.lower()))
        def __lt__(self, other):
            return ((self.lastname.lower(), self.firstname.lower()) <
                    (other.lastname.lower(), other.firstname.lower()))
    
    dir(Student)    # ['__doc__', '__eq__', '__ge__', '__gt__', '__le__', '__lt__', '__module__']
    

    再看一个示例:

    from functools import total_ordering
    
    @total_ordering
    class Student:
        def __init__(self, firstname, lastname):
            self.firstname = firstname
            self.lastname = lastname
    
        def __eq__(self, other):
            return ((self.lastname.lower(), self.firstname.lower()) ==
                    (other.lastname.lower(), other.firstname.lower()))
    
        def __lt__(self, other):
            return ((self.lastname.lower(), self.firstname.lower()) <
                    (other.lastname.lower(), other.firstname.lower()))
    
    print dir(Student)
    
    stu = Student("Huoty", "Kong")
    stu2 = Student("Huoty", "Kong")
    stu3 = Student("Qing", "Lu")
    
    print stu == stu2
    print stu > stu3
    

    输出结果:

    ['__doc__', '__eq__', '__ge__', '__gt__', '__init__', '__le__', '__lt__', '__module__']
    True
    False
    

    用于缓存的lru_cache

    这个装饰器是在 Python3 中新加的,在 Python2 中如果想要使用可以安装第三方库 functools32。该装饰器用于缓存函数的调用结果,对于需要多次调用的函数,而且每次调用参数都相同,则可以用该装饰器缓存调用结果,从而加快程序运行。示例:

    from functools import lru_cache
    
    @lru_cache(None)
    def add(x, y):
        print("calculating: %s + %s" % (x, y))
        return x + y
    
    print(add(1, 2))
    print(add(1, 2))  # 直接返回缓存信息
    print(add(2, 3))
    

    输出结果:

    calculating: 1 + 2
    3
    3
    calculating: 2 + 3
    5
    

    由于该装饰器会将不同的调用结果缓存在内存中,因此需要注意内存占用问题,避免占用过多内存,从而影响系统性能。

    相关文档:

    blog.windrunner.me/python/func…

    kuanghy.github.io/2016/10/26/…

    pymotw.com/3/

    相关文章

      网友评论

        本文标题:每周一个 Python 模块 | functools

        本文链接:https://www.haomeiwen.com/subject/ykxyfqtx.html