4.Lock的使用

作者: 落叶飞逝的恋 | 来源:发表于2017-09-16 09:18 被阅读110次

    1.ReentrantLock

    在Java多线程中,可以使用synchronized关键字来实现线程之间的同步互斥。但是在Java 1.5中新增了ReentrantLock类也能达到同样的效果。并且扩展了许多功能。比synchronized更加灵活。

    • 代码演示

    • 新建业务类

    public class Business {
        private Lock lock = new ReentrantLock();
    
        public void print() {
            //lock.lock();
            for (int i = 0; i < 5; i++) {
                System.out.println(String.format("%s:%d", Thread.currentThread().getName(), i));
            }
            //lock.unlock();
        }
    }
    
    • 新建线程A
    public class ThreadA extends Thread {
        private Business business;
    
        public ThreadA(Business business) {
            super();
            this.business = business;
        }
    
        @Override
        public void run() {
            business.print();
        }
    }
    
    • 新建线程B
    public class ThreadB extends Thread {
    
        private Business business;
    
        public ThreadB(Business business){
            this.business=business;
        }
    
        @Override
        public void run() {
            business.print();
        }
    }
    
    
    • Client
    public class Client {
        public static void main(String[] args) {
            Business business = new Business();
            ThreadA a = new ThreadA(business);
            ThreadB b = new ThreadB(business);
            a.start();
            b.start();
        }
    }
    
    • 没加锁的结果
    线程B:0
    线程B:1
    线程B:2
    线程B:3
    线程B:4
    线程A:0
    线程A:1
    线程A:2
    线程A:3
    线程A:4
    
    • 加锁后的结果
    线程B:0
    线程B:1
    线程B:2
    线程B:3
    线程B:4
    线程A:0
    线程A:1
    线程A:2
    线程A:3
    线程A:4
    

    由此可看出,ReentrantLock实现了synchronized的同步的功能。lock.lock()是获取锁。lock.unlock()是释放锁。

    1.1结合Condition实现wait与notify功能

    关键字synchronized与wait及notify结合,可以实现等待、通知模式。而ReentrantLock与Condition结合也可以实现同样的功能。

    • 代码演示

    • 新建业务类

    public class Business {
        private Lock lock = new ReentrantLock();
    
        private Condition condition = lock.newCondition();
    
        private int num;
    
        public void print() {
            try {
                lock.lock();
                for (int i = 0; i < 5; i++) {
                    System.out.println(String.format("%s:%d", Thread.currentThread().getName(), i));
                    num = i;
                    if (i == 2){
                        condition.await();
                        System.out.println("接受到信号,执行完毕");
                    }
                }
            } catch (Exception ex) {
                ex.printStackTrace();
            } finally {
                lock.unlock();
            }
    
        }
    
        public void notifyPrint() {
            lock.lock();
            if (num == 2)
                condition.signal();
            lock.unlock();
        }
    }
    
    
    • 新建线程A
    public class ThreadA extends Thread {
        private Business business;
    
        public ThreadA(Business business) {
            super();
            this.business = business;
        }
    
        @Override
        public void run() {
            business.print();
        }
    }
    
    • 新建线程B
    public class ThreadB extends Thread {
    
        private Business business;
    
        public ThreadB(Business business) {
            this.business = business;
        }
    
        @Override
        public void run() {
            business.notifyPrint();
        }
    }
    
    • Client
    public class Client {
        public static void main(String[] args) throws InterruptedException {
            Business business = new Business();
            ThreadA a = new ThreadA(business);
            a.setName("线程A");
            ThreadB b = new ThreadB(business);
            b.setName("线程B");
            a.start();
            Thread.sleep(2000);
            b.start();
        }
    }
    
    • 结果
    Connected to the target VM, address: '127.0.0.1:62623', transport: 'socket'
    线程A:0
    线程A:1
    线程A:2
    Disconnected from the target VM, address: '127.0.0.1:62623', transport: 'socket'
    接受到信号,执行完毕
    线程A:3
    线程A:4
    

    下面图标表示Object里面的类的方法与Condition类的方法对比

    Object Condition
    wait() await()
    wait(long timeout) await(long time, TimeUnit unit)
    notify() signal()
    notifyAll() signalAll()

    1.2 Condition的部分唤醒

    在服务类中创建多个Condition实例。进行对其分组操作。

    private Condition condition = lock.newCondition();
    
    private Condition condition2 = lock.newCondition();
    

    1.3公平锁与非公平锁

    公平锁:线程获取锁的顺序是按照线程加锁的顺序来分配的。即先进先出的顺序(FIFO)。

    非公平锁:获取锁的抢占机制,是随机获得锁的。

    • ReentrantLock的构造函数
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }
    

    传入true为公平锁,传入false为非公平锁。

    1.4ReentrantLock及Condition其他重要方法

    • 1.getHoldCount

    查询当前线程保持锁定的个数,也就是调用lock()的次数

    public int getHoldCount() {
        return sync.getHoldCount();
    }
    
    • 2.getQueueLength

    计算正等待获取此锁定的线程数。比如一个线程在锁内休眠,其他9个线程正在等待,那么调用此方法返回9。

    public final int getQueueLength() {
        return sync.getQueueLength();
    }
    
    • 3.getWaitQueueLength

    返回给定条件的Condition相关的等待此锁的线程数。

    public int getWaitQueueLength(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
    }
    
    • 4.hasQueuedThread

    查询指定的线程是否正在等待获取此锁

    public final boolean hasQueuedThread(Thread thread) {
        return sync.isQueued(thread);
    }
    
    • 5.hasQueuedThreads

    查询是否有线程正在等待获取此锁

    public final boolean hasQueuedThreads() {
        return sync.hasQueuedThreads();
    }
    
    • 6.hasWaiters

    根据Condition条件去查询是否有线程正在等待获取此锁

    public boolean hasWaiters(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
    }
    
    • 7.isFair

    判断是不是公平锁

    public final boolean isFair() {
        return sync instanceof FairSync;
    }
    
    • 8.isHeldByCurrentThread

    查询当前是否保持锁定

    public boolean isHeldByCurrentThread() {
        return sync.isHeldExclusively();
    }
    
    • 9.isLocked

    判断当前锁是否由任意线程锁定

    public boolean isLocked() {
        return sync.isLocked();
    }
    
    • 10.lockInterruptibly

    如果当前线程未被中断,则获取获取锁定,(相当于lock())如果已经中断则抛出异常

    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }
    
    • 11.tryLock

    当锁没有被其他线程占用,则获取锁定。

    public boolean tryLock() {
        return sync.nonfairTryAcquire(1);
    }
    
    • 12.tryLock(long timeout, TimeUnit unit)

    在给定的时间内,锁没有被其他线程占用,则获取锁

    public boolean tryLock(long timeout, TimeUnit unit)
            throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(timeout));
    }
    
    • 13.awaitUninterruptibly

    线程在等待的时候,线程若主动抛出异常,则相对应的程序也不会抛出异常。

    public final void awaitUninterruptibly() {
        Node node = addConditionWaiter();
        int savedState = fullyRelease(node);
        boolean interrupted = false;
        while (!isOnSyncQueue(node)) {
            LockSupport.park(this);
            if (Thread.interrupted())
                interrupted = true;
        }
        if (acquireQueued(node, savedState) || interrupted)
            selfInterrupt();
    }
    
    • 14.awaitUntil

    某线程在指定的时间内处于等待状态,超过时间,自动运行线程。

    public final boolean awaitUntil(Date deadline)
            throws InterruptedException {
        long abstime = deadline.getTime();
        if (Thread.interrupted())
            throw new InterruptedException();
        Node node = addConditionWaiter();
        int savedState = fullyRelease(node);
        boolean timedout = false;
        int interruptMode = 0;
        while (!isOnSyncQueue(node)) {
            if (System.currentTimeMillis() > abstime) {
                timedout = transferAfterCancelledWait(node);
                break;
            }
            LockSupport.parkUntil(this, abstime);
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        if (node.nextWaiter != null)
            unlinkCancelledWaiters();
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
        return !timedout;
    }
    

    2.ReentrantReadWriteLock

    ReentrantLock具有完全互斥排他的效果,即同一时间只有一个线程在执行ReentrantLock.Lock()方法后面的任务。

    这样虽然保证了实例变量的线程安全性,但是效率却是低下的。这时候就诞生了读写锁ReentrantReadWriteLock。

    读写锁有两个锁:

    • 1.共享锁:读操作相关的锁
    • 2.排他锁:写操作相关的锁
    private ReentrantReadWriteLock lock1 = new ReentrantReadWriteLock();
    
    lock1.writeLock().lock();
    lock1.writeLock().unlock();
    
    lock1.readLock().lock();
    lock1.readLock().unlock();
    

    同一个类中,有两个及两个以上的方法。一个使用读锁,一个使用写锁。那么它们是互斥的。只有所有的方法是读锁,才是不相互干扰,不排斥的。

    相关文章

      网友评论

        本文标题:4.Lock的使用

        本文链接:https://www.haomeiwen.com/subject/dhdysxtx.html