同步wx公主号(arXiv每日论文速递),支持后台回复'search 关键词'搜索相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)
cs.AI 方向,今日共计24篇
【1】 RNNbow: Visualizing Learning via Backpropagation Gradients in Recurrent Neural Networks
标题:RNNbow:通过递归神经网络中的反向传播梯度可视化学习
作者: Dylan Cashman, Remco Chang
链接:https://arxiv.org/abs/1907.12545
【2】 A Syntactic Operator for Forgetting that Satisfies Strong Persistence
标题:满足强持久性的遗忘句法算子
作者: Matti Berthold, João Leite
备注:Paper presented at the 35th International Conference on Logic Programming (ICLP 2019), Las Cruces, New Mexico, USA, 20-25 September 2019, 16 pages
链接:https://arxiv.org/abs/1907.12501
【3】 Precomputing Datalog evaluation plans in large-scale scenarios
标题:大规模场景中数据日志评估计划的预计算
作者: Alessio Fiorentino, Jessica Zangari
备注:Paper presented at the 35th International Conference on Logic Programming (ICLP 2019), Las Cruces, New Mexico, USA, 20-25 September 2019, 16 pages
链接:https://arxiv.org/abs/1907.12495
【4】 Learning abstract perceptual notions: the example of space
标题:学习抽象的感性概念:空间的例子
作者: Alexander V. Terekhov, J. Kevin O'Regan
链接:https://arxiv.org/abs/1907.12430
【5】 A Distributed Approach to LARS Stream Reasoning (System paper)
标题:LARS流推理的分布式方法(系统论文)
作者: Thomas Eiter, Konstantin Schekotihin
链接:https://arxiv.org/abs/1907.12344
【6】 Towards Optimizing Reiter's HS-Tree for Sequential Diagnosis
标题:面向序贯诊断的优化Reiter HS-Tree
作者: Patrick Rodler
链接:https://arxiv.org/abs/1907.12130
【7】 A difficulty ranking approach to personalization in E-learning
标题:一种E-learning个性化难度排序方法
作者: Avi Segal, Bracha Shapira
链接:https://arxiv.org/abs/1907.12047
【8】 Towards Model-based Reinforcement Learning for Industry-near Environments
标题:面向行业近环境的基于模型的强化学习
作者: Per-Arne Andersen, Ole-Christoffer Granmo
链接:https://arxiv.org/abs/1907.11971
【9】 Learning to design from humans: Imitating human designers through deep learning
标题:向人类学习设计:通过深度学习模仿人类设计师
作者: Ayush Raina, Jonathan Cagan
链接:https://arxiv.org/abs/1907.11813
【10】 von Neumann-Morgenstern and Savage Theorems for Causal Decision Making
标题:关于因果决策的von Neumann-Morgenstein和Savage定理
作者: Mauricio Gonzalez-Soto, Hugo J. Escalante
备注:Submitted to NeurIPS 2019
链接:https://arxiv.org/abs/1907.11752
【11】 Hindsight Trust Region Policy Optimization
标题:后见之明信任区策略优化
作者: Hanbo Zhang, Nanning Zheng
链接:https://arxiv.org/abs/1907.12439
【12】 Modelling the Safety and Surveillance of the AI Race
标题:AI比赛的安全和监控建模
作者: The Anh Han, Tom Lenaerts
链接:https://arxiv.org/abs/1907.12393
【13】 A Unified Bellman Optimality Principle Combining Reward Maximization and Empowerment
标题:一种结合报酬最大化和授权的统一Bellman优化原则
作者: Felix Leibfried, Jordi Grau-Moya
链接:https://arxiv.org/abs/1907.12392
【14】 Topic Modeling with Wasserstein Autoencoders
标题:使用Wasserstein自动编码器的主题建模
作者: Feng Nan, Bing Xiang
备注:to appear at ACL 2019
链接:https://arxiv.org/abs/1907.12374
【15】 A Mathematical Model for Linguistic Universals
标题:语言共性的数学模型
作者: Weinan E, Yajun Zhou
备注:Main text (9 pages, 6 figures); Materials and Methods (iii+275 pages, 20 figures, 5 tables)
链接:https://arxiv.org/abs/1907.12293
【16】 What Should I Ask? Using Conversationally Informative Rewards for Goal-Oriented Visual Dialog
标题:我该问什么?为面向目标的可视对话使用会话信息性奖励
作者: Pushkar Shukla, William Yang Wang
备注:Accepted to ACL 2019
链接:https://arxiv.org/abs/1907.12021
【17】 Mindful Active Learning
标题:专心主动学习
作者: Zhila Esna Ashari, Hassan Ghasemzadeh
链接:https://arxiv.org/abs/1907.12003
【18】 Towards Understanding and Modeling Empathy for Use in Motivational Design Thinking
标题:向理解和建模同理心用于动机设计思维
作者: Gloria Washington, Rouzbeh Shirvani
链接:https://arxiv.org/abs/1907.12001
【19】 DynWalks: Global Topology and Recent Changes Awareness Dynamic Network Embedding
标题:DynWalks:全局拓扑和最近变化意识动态网络嵌入
作者: Chengbin Hou, Shan He
链接:https://arxiv.org/abs/1907.11968
【20】 Is BERT Really Robust? Natural Language Attack on Text Classification and Entailment
标题:伯特真的很强壮吗?自然语言对文本分类和蕴涵的攻击
作者: Di Jin, Peter Szolovits
链接:https://arxiv.org/abs/1907.11932
【21】 Towards Effective Rebuttal: Listening Comprehension using Corpus-Wide Claim Mining
标题:走向有效反驳:使用语料库范围内的权利要求挖掘的听力理解
作者: Tamar Lavee, Noam Slonim
备注:6th Argument Mining Workshop @ ACL 2019
链接:https://arxiv.org/abs/1907.11889
【22】 Analyzing Linguistic Complexity and Scientific Impact
标题:分析语言复杂性和科学影响
作者: Chao Lu, Chengzhi Zhang
链接:https://arxiv.org/abs/1907.11843
【23】 Deep Learning for CSI Feedback Based on Superimposed Coding
标题:基于叠加编码的CSI反馈深度学习
作者: Chaojin Qing, Chuan Huang
链接:https://arxiv.org/abs/1907.11836
【24】 Environment Probing Interaction Policies
标题:环境探测交互策略
作者: Wenxuan Zhou, Abhinav Gupta
备注:Published as a conference paper at ICLR 2019
链接:https://arxiv.org/abs/1907.11740
翻译:腾讯翻译君
网友评论