同步wx公主号(arXiv每日论文速递),支持后台回复'search 关键词'搜索相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)
cs.CV 方向,今日共计77篇
[检测分类相关]:
【1】 X-LineNet: Detecting Aircraft in Remote Sensing Images by a pair of Intersecting Line Segments
X-LineNet:通过一对相交的线段检测遥感图像中的飞行器
作者: Haoran Wei, Zhang Yue
链接:https://arxiv.org/abs/1907.12474
【2】 Specular- and Diffuse-reflection-based Face Liveness Detection for Mobile Devices
基于镜面反射和漫反射的移动设备人脸活性检测
作者: Akinori F. Ebihara, Hitoshi Imaoka
链接:https://arxiv.org/abs/1907.12400
【3】 On the Realization and Analysis of Circular Harmonic Transforms for Feature Detection
特征检测中圆谐变换的实现与分析
作者: Hugh L Kennedy
链接:https://arxiv.org/abs/1907.12165
【4】 It's All About The Scale -- Efficient Text Detection Using Adaptive Scaling
这一切都是关于缩放-使用自适应缩放的高效文本检测
作者: Elad Richardson, Stav Shapiro
链接:https://arxiv.org/abs/1907.12122
【5】 Real-time Tracking-by-Detection of Human Motion in RGB-D Camera Networks
RGB-D摄像机网络中人体运动的实时跟踪
作者: Alessandro Malaguti, Stefano Ghidoni
备注:Accepted to IEEE SMC 2019
链接:https://arxiv.org/abs/1907.12112
【6】 Rethinking Classification and Localization for Cascade R-CNN
对级联R-CNN分类和定位的再思考
作者: Ang Li, Chongyang Zhang
备注:BMVC 2019 Camera Ready
链接:https://arxiv.org/abs/1907.11914
【7】 Forced Spatial Attention for Driver Foot Activity Classification
驾驶员足部活动分类的强制空间注意
作者: Akshay Rangesh, Mohan M. Trivedi
链接:https://arxiv.org/abs/1907.11824
【8】 Grape detection, segmentation and tracking using deep neural networks and three-dimensional association
利用深层神经网络和三维关联进行葡萄检测、分割和跟踪
作者: Thiago T. Santos, Sandra Avila
链接:https://arxiv.org/abs/1907.11819
【9】 Accurate and Robust Pulmonary Nodule Detection by 3D Feature Pyramid Network with Self-supervised Feature Learning
基于自监督特征学习的3D特征金字塔网络精确而鲁棒的肺结节检测
作者: Jingya Liu, Yingli Tian
备注:15 pages, 8 figures, 5 tables, under review by Medical Image Analysis. arXiv admin note: substantial text overlap with arXiv:1906.03467
链接:https://arxiv.org/abs/1907.11704
【10】 Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
基于神经网络的基于强度的距离回归自动病变检测
作者: Kimberlin M.H. van Wijnen, Marleen de Bruijne
备注:MICCAI 2019
链接:https://arxiv.org/abs/1907.12452
[分割/语义相关]:
【1】 FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation
FSS-1000:用于少镜头分割的1000类数据集
作者: Tianhan Wei, Chi-Keung Tang
链接:https://arxiv.org/abs/1907.12347
【2】 Multi-Task Attention-Based Semi-Supervised Learning for Medical Image Segmentation
基于多任务注意的半监督医学图像分割学习
作者: Shuai Chen, Marleen de Bruijne
备注:Accepted at MICCAI 2019
链接:https://arxiv.org/abs/1907.12303
【3】 A Two Stage GAN for High Resolution Retinal Image Generation and Segmentation
用于高分辨率视网膜图像生成和分割的两级GaN
作者: Paolo Andreini, Andrea Sodi
链接:https://arxiv.org/abs/1907.12296
【4】 Regularizing Proxies with Multi-Adversarial Training for Unsupervised Domain-Adaptive Semantic Segmentation
面向无监督领域自适应语义分割的多对抗性训练正规化代理
作者: Tong Shen, Tao Mei
链接:https://arxiv.org/abs/1907.12282
【5】 Interlaced Sparse Self-Attention for Semantic Segmentation
基于交错稀疏自注意的语义切分
作者: Lang Huang, Jingdong Wang
链接:https://arxiv.org/abs/1907.12273
【6】 A Fine-Grain Error Map Prediction and Segmentation Quality Assessment Framework for Whole-Heart Segmentation
一种适用于全心分割的细粒度误差图预测和分割质量评估框架
作者: Rongzhao Zhang, Albert C.S. Chung
备注:9 pages, accepted by MICCAI'19
链接:https://arxiv.org/abs/1907.12244
【7】 Automatic Text Line Segmentation Directly in JPEG Compressed Document Images
直接在JPEG压缩文档图像中自动进行文本行分割
作者: Bulla Rajesh, P Nagabhushan
备注:Accepted in GCCE2019, Okinawa, Japan
链接:https://arxiv.org/abs/1907.12219
【8】 FocusNet: Imbalanced Large and Small Organ Segmentation with an End-to-End Deep Neural Network for Head and Neck CT Images
FocusNet:基于端到端深度神经网络的头颈部CT图像不平衡大小器官分割
作者: Yunhe Gao, Hongsheng Li
备注:MICCAI 2019
链接:https://arxiv.org/abs/1907.12056
【9】 DAR-Net: Dynamic Aggregation Network for Semantic Scene Segmentation
DAR-NET:面向语义场景分割的动态聚合网络
作者: Zongyue Zhao, Karthik Ramani
链接:https://arxiv.org/abs/1907.12022
【10】 Segmenting Hyperspectral Images Using Spectral-Spatial Convolutional Neural Networks With Training-Time Data Augmentation
利用训练时间数据增强的谱-空间卷积神经网络分割高光谱图像
作者: Jakub Nalepa, Michal Kawulok
链接:https://arxiv.org/abs/1907.11935
【11】 Semantic Guided Single Image Reflection Removal
语义引导的单幅图像反射去除
作者: Yunfei Liu, Feng Lu
链接:https://arxiv.org/abs/1907.11912
【12】 Pick-and-Learn: Automatic Quality Evaluation for Noisy-Labeled Image Segmentation
Pick-and-Learn:噪声标记图像分割的自动质量评估
作者: Haidong Zhu, Ji Wu
备注:Accepted for MICCAI2019
链接:https://arxiv.org/abs/1907.11835
[GAN/对抗式/生成式相关]:
【1】 Learn to Scale: Generating Multipolar Normalized Density Map for Crowd Counting
学会缩放:生成用于人群计数的多极归一化密度贴图
作者: Chenfeng Xu, Xiang Bai
备注:Accepted to ICCV 2019
链接:https://arxiv.org/abs/1907.12428
【2】 MaskGAN: Towards Diverse and Interactive Facial Image Manipulation
MaskGAN:走向多样化和交互式的面部图像处理
作者: Cheng-Han Lee, Ping Luo
链接:https://arxiv.org/abs/1907.11922
【3】 Blind Deblurring Using GANs
利用GANS实现盲解模糊
作者: Manoj Kumar Lenka, Anurag Mittal
链接:https://arxiv.org/abs/1907.11880
【4】 Quadtree Generating Networks: Efficient Hierarchical Scene Parsing with Sparse Convolutions
四叉树生成网络:使用稀疏卷积的高效分层场景解析
作者: Kashyap Chitta, Martial Hebert
链接:https://arxiv.org/abs/1907.11821
【5】 VITAL: A Visual Interpretation on Text with Adversarial Learning for Image Labeling
重要:图像标注的对抗性学习文本的视觉解释
作者: Tao Hu, Chunxia Xiao
链接:https://arxiv.org/abs/1907.11811
【6】 Solar Image Restoration with the Cycle-GAN Based on Multi-Fractal Properties of Texture Features
基于纹理特征多重分形特性的周期GaN太阳图像恢复
作者: Peng Jia, Dongmei Cai
链接:https://arxiv.org/abs/1907.12192
【7】 Generative Adversarial Network for Handwritten Text
手写文本的生成对抗性网络
作者: Bo Ji, Tianyi Chen
备注:12 pages, 7 figures, submitted for WACV 2020
链接:https://arxiv.org/abs/1907.11845
[图像/视频检索]:
【1】 A Benchmark on Tricks for Large-scale Image Retrieval
一种用于大规模图像检索的Tricks基准测试
作者: ByungSoo Ko, Youngjoon Kim
链接:https://arxiv.org/abs/1907.11854
【2】 Hybrid-Attention based Decoupled Metric Learning for Zero-Shot Image Retrieval
基于混合关注度的解耦度量学习在零镜头图像检索中的应用
作者: Binghui Chen, Weihong Deng
备注:CVPR 2019
链接:https://arxiv.org/abs/1907.11832
[行为/时空/光流/姿态/运动]:
【1】 Optical Flow for Intermediate Frame Interpolation of Multispectral Geostationary Satellite Data
多光谱地球同步卫星数据中间帧插值的光流
作者: Thomas Vandal, Ramakrishna Nemani
链接:https://arxiv.org/abs/1907.12013
[半/弱/无监督相关]:
【1】 Self-Supervised Learning for Stereo Reconstruction on Aerial Images
航空图像立体重建的自监督学习
作者: Patrick Knöbelreiter, Thomas Pock
备注:Symposium Prize Paper Award @IGARSS 2018
链接:https://arxiv.org/abs/1907.12446
【2】 Recursive Cascaded Networks for Unsupervised Medical Image Registration
递归级联网络在无监督医学图像配准中的应用
作者: Shengyu Zhao, Yan Xu
备注:Accepted to ICCV 2019
链接:https://arxiv.org/abs/1907.12353
[跟踪相关]:
【1】 End-to-End Learning Deep CRF models for Multi-Object Tracking
用于多目标跟踪的端到端学习深度CRF模型
作者: Jun Xiang, Jianhua Hou
链接:https://arxiv.org/abs/1907.12176
【2】 ROAM: Recurrently Optimizing Tracking Model
ROAM:递归优化跟踪模型
作者: Tianyu Yang, Antoni B. Chan
链接:https://arxiv.org/abs/1907.12006
【3】 Remote Heart Rate Measurement from Highly Compressed Facial Videos: an End-to-end Deep Learning Solution with Video Enhancement
来自高度压缩的面部视频的远程心率测量:具有视频增强的端到端深度学习解决方案
作者: Zitong Yu, Guoying Zhao
备注:IEEE ICCV2019, accepted
链接:https://arxiv.org/abs/1907.11921
【4】 Tell Me What to Track
告诉我要跟踪什么
作者: Qi Feng, Stan Sclaroff
链接:https://arxiv.org/abs/1907.11751
[迁移学习/domain/主动学习相关]:
【1】 Fairest of Them All: Establishing a Strong Baseline for Cross-Domain Person ReID
其中最公平的:为跨域人员Reid建立强大的基线
作者: Devinder Kumar, Alexander Wong
链接:https://arxiv.org/abs/1907.12016
[裁剪/量化/加速相关]:
【1】 Memory- and Communication-Aware Model Compression for Distributed Deep Learning Inference on IoT
面向物联网分布式深度学习推理的内存和通信感知模型压缩
作者: Kartikeya Bhardwaj, Radu Marculescu
备注:This preprint is for personal use only. The official article will appear as part of the ESWEEK-TECS special issue and will be presented in the International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2019
链接:https://arxiv.org/abs/1907.11804
[其他视频相关]:
【1】 Meta Learning for Task-Driven Video Summarization
用于任务驱动视频摘要的元学习
作者: Xuelong Li, Yongsheng Dong
链接:https://arxiv.org/abs/1907.12342
【2】 Seeing Things in Random-Dot Videos
在随机点视频中看东西
作者: Thomas Dagès, Alfred M. Bruckstein
链接:https://arxiv.org/abs/1907.12195
[其他]:
【1】 Towards Automatic Screening of Typical and Atypical Behaviors in Children With Autism
自闭症儿童典型和非典型行为的自动筛选
作者: Andrew Cook, Matthew Johnson
备注:7 pages, 5 figures and 6 tables. 6th IEEE International Conference on Data Science and Advanced Analytics (DSAA) 2019
链接:https://arxiv.org/abs/1907.12537
【2】 Benefiting from Multitask Learning to Improve Single Image Super-Resolution
利用多任务学习提高单幅图像超分辨率
作者: Mohammad Saeed Rad, Jean-Philippe Thiran
备注:accepted at Neurocomputing (Special Issue on Deep Learning for Image Super-Resolution), 2019
链接:https://arxiv.org/abs/1907.12488
【3】 Salient Slices: Improved Neural Network Training and Performance with Image Entropy
显著切片:改进的神经网络训练和图像熵性能
作者: Steven J. Frank, Andrea M. Frank
链接:https://arxiv.org/abs/1907.12436
【4】 Consensus Feature Network for Scene Parsing
用于场景解析的共识特征网络
作者: Tianyi Wu, Yongdong Zhang
链接:https://arxiv.org/abs/1907.12411
【5】 Goal-Driven Sequential Data Abstraction
目标驱动的顺序数据抽象
作者: Umar Riaz Muhammad, Yi-Zhe Song
备注:Accepted at ICCV 2019
链接:https://arxiv.org/abs/1907.12336
【6】 V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices
V-PROM:使用可视渐进矩阵的可视推理基准
作者: Damien Teney, Anton van den Hengel
链接:https://arxiv.org/abs/1907.12271
【7】 AirFace:Lightweight and Efficient Model for Face Recognition
AirFace:轻量级高效的人脸识别模型
作者: Xianyang Li
链接:https://arxiv.org/abs/1907.12256
【8】 Silhouette Guided Point Cloud Reconstruction beyond Occlusion
轮廓导引的遮挡后的点云重建
作者: Chuhang Zou, Derek Hoiem
链接:https://arxiv.org/abs/1907.12253
【9】 Automatic Registration between Cone-Beam CT and Scanned Surface via Deep-Pose Regression Neural Networks and Clustered Similarities
基于深度姿态回归神经网络和聚类相似性的锥束CT与扫描表面自动配准
作者: Minyoung Chung, Yeong-Gil Shin
链接:https://arxiv.org/abs/1907.12250
【10】 KNEEL: Knee Anatomical Landmark Localization Using Hourglass Networks
膝部:利用沙漏网络进行膝关节解剖地标定位
作者: Aleksei Tiulpin, Simo Saarakkala
链接:https://arxiv.org/abs/1907.12237
【11】 Multi-Granularity Fusion Network for Proposal and Activity Localization: Submission to ActivityNet Challenge 2019 Task 1 and Task 2
用于提案和活动本地化的多粒度融合网络:提交给ActivityNet挑战2019任务1和任务2
作者: Haisheng Su, Shuming Liu
链接:https://arxiv.org/abs/1907.12223
【12】 Enforcing geometric constraints of virtual normal for depth prediction
加强虚拟法线的几何约束进行深度预测
作者: Yin Wei, Youliang Yan
备注:Appearing in Proc. Int. Conf. Computer Vision 2019. Code is available at: this https URL
链接:https://arxiv.org/abs/1907.12209
【13】 ChaLearn Looking at People: IsoGD and ConGD Large-scale RGB-D Gesture Recognition
ChaLearn看人:IsoGD和ConGD大规模RGB-D手势识别
作者: Jun Wan, Stan Z. Li
链接:https://arxiv.org/abs/1907.12193
【14】 Iris Recognition for Personal Identification using LAMSTAR neural network
LAMSTAR神经网络用于个人身份识别的虹膜识别
作者: Shideh Homayon, Mahdi Salarian
链接:https://arxiv.org/abs/1907.12145
【15】 An Empirical Study on Leveraging Scene Graphs for Visual Question Answering
利用场景图进行视觉问答的实证研究
作者: Cheng Zhang, Dong Xuan
备注:Accepted as oral presentation at BMVC 2019
链接:https://arxiv.org/abs/1907.12133
【16】 Dilated Point Convolutions: On the Receptive Field of Point Convolutions
扩张点卷积:关于点卷积的接受场
作者: Francis Engelmann, Bastian Leibe
链接:https://arxiv.org/abs/1907.12046
【17】 Learning Wear Patterns on Footwear Outsoles Using Convolutional Neural Networks
用卷积神经网络学习鞋底磨损模式
作者: Xavier Francis, Soheil Varastehpour
链接:https://arxiv.org/abs/1907.12005
【18】 Attribute-Guided Deep Polarimetric Thermal-to-visible Face Recognition
属性引导的深度偏振热-可见光人脸识别
作者: Seyed Mehdi Iranmanesh, Nasser M. Nasrabadi
链接:https://arxiv.org/abs/1907.11980
【19】 Learning Body Shape and Pose from Dense Correspondences
从密集对应中学习身体形状和姿势
作者: Yusuke Yoshiyasu, Lucas Gamez
链接:https://arxiv.org/abs/1907.11955
【20】 Triangulation: Why Optimize?
三角剖分:为什么要优化?
作者: Seong Hun Lee, Javier Civera
备注:Accepted to BMVC2019 (oral presentation)
链接:https://arxiv.org/abs/1907.11917
【21】 Context Model for Pedestrian Intention Prediction using Factored Latent-Dynamic Conditional Random Fields
基于因子潜在动态条件随机场的行人意向预测上下文模型
作者: Satyajit Neogi, Justin Dauwels
链接:https://arxiv.org/abs/1907.11881
【22】 Genetic Deep Learning for Lung Cancer Screening
遗传深度学习在肺癌筛查中的应用
作者: Hunter Park, Connor Monahan
链接:https://arxiv.org/abs/1907.11849
【23】 Learning Instance-wise Sparsity for Accelerating Deep Models
学习实例稀疏性加速深度模型
作者: Chuanjian Liu, Chang Xu
备注:Accepted by IJCAI 2019
链接:https://arxiv.org/abs/1907.11840
【24】 Attribute Aware Pooling for Pedestrian Attribute Recognition
用于行人属性识别的属性感知池
作者: Kai Han, Chang Xu
备注:Accepted by IJCAI 2019
链接:https://arxiv.org/abs/1907.11837
【25】 Reprojection R-CNN: A Fast and Accurate Object Detector for 360° Images
再投影R-CNN:一种快速准确的360°图像物体检测器
作者: Pengyu Zhao, Yunhai Tong
链接:https://arxiv.org/abs/1907.11830
【26】 To Learn or Not to Learn: Analyzing the Role of Learning for Navigation in Virtual Environments
学习还是不学习:虚拟环境中导航学习的角色分析
作者: Noriyuki Kojima, Jia Deng
链接:https://arxiv.org/abs/1907.11770
【27】 Solving the Robot-World Hand-Eye(s) Calibration Problem with Iterative Methods
用迭代方法求解机器人世界手眼标定问题
作者: Amy Tabb, Khalil M. Ahmad Yousef
链接:https://arxiv.org/abs/1907.12425
【28】 Charting the Right Manifold: Manifold Mixup for Few-shot Learning
绘制正确的流形:流形混合用于少量学习
作者: Puneet Mangla, Balaji Krishnamurthy
链接:https://arxiv.org/abs/1907.12087
【29】 Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization
基于松散对训练的双流CNN多模态AMD分类
作者: Weisen Wang, Xirong Li
备注:accepted by MICCAI 2019
链接:https://arxiv.org/abs/1907.12023
【30】 What Should I Ask? Using Conversationally Informative Rewards for Goal-Oriented Visual Dialog
我该问什么?为面向目标的可视对话使用会话信息性奖励
作者: Pushkar Shukla, William Yang Wang
备注:Accepted to ACL 2019
链接:https://arxiv.org/abs/1907.12021
【31】 Learnable Parameter Similarity
可学习参数相似性
作者: Guangcong Wang, Guangrun Wang
链接:https://arxiv.org/abs/1907.11943
【32】 Deep learning-based prediction of kinetic parameters from myocardial perfusion MRI
基于深度学习的心肌灌注MRI动力学参数预测
作者: Cian M. Scannell, Mitko Veta
备注:Medical Imaging with Deep Learning: MIDL 2019 Extended Abstract Track. MIDL 2019 [arXiv:1907.08612]
链接:https://arxiv.org/abs/1907.11899
【33】 Effective and efficient ROI-wise visual encoding using an end-to-end CNN regression model and selective optimization
使用端到端CNN回归模型和选择性优化的有效且高效的ROI-wise视觉编码
作者: Kai Qiao, Bin Yan
链接:https://arxiv.org/abs/1907.11885
【34】 Momentum-Net: Fast and convergent iterative neural network for inverse problems
动量网:快速收敛的反问题迭代神经网络
作者: Il Yong Chun, Jeffrey A. Fessler
链接:https://arxiv.org/abs/1907.11818
【35】 Deep MRI Reconstruction: Unrolled Optimization Algorithms Meet Neural Networks
深度MRI重建:展开优化算法满足神经网络
作者: Dong Liang, Leslie Ying
链接:https://arxiv.org/abs/1907.11711
翻译:腾讯翻译君
网友评论