美文网首页iOS开发技巧
OC底层原理13-类的加载(二)

OC底层原理13-类的加载(二)

作者: 夏天的枫_ | 来源:发表于2020-10-26 01:17 被阅读0次

iOS--OC底层原理文章汇总

本文继续研究类的加载--分类(类别)。

分类Category

在 类加载(一)category_list -> attachCategories中研究到,对分类操作处理了,那么就需要对分类是如何加载做一个探究。

1.研究方法:clang

main.m中新建一个分类,定义一些方法,clang之得到main.cpp

// 底层分类的结构
struct _category_t {
    const char *name;
    struct _class_t *cls;
    const struct _method_list_t *instance_methods;
    const struct _method_list_t *class_methods;
    const struct _protocol_list_t *protocols;
    const struct _prop_list_t *properties;
};

2.Documentation

分类解释

在objc源码中找寻category_t,也能查看到分类的底层结构


struct category_t {
    const char *name;
    classref_t cls;
    struct method_list_t *instanceMethods;
    struct method_list_t *classMethods;
    struct protocol_list_t *protocols;
    struct property_list_t *instanceProperties;
    // Fields below this point are not always present on disk.
    struct property_list_t *_classProperties;

    method_list_t *methodsForMeta(bool isMeta) {
        if (isMeta) return classMethods;
        else return instanceMethods;
    }

    property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
    
    protocol_list_t *protocolsForMeta(bool isMeta) {
        if (isMeta) return nullptr;
        else return protocols;
    }
};

分类本质

  • 有两个属性:name(类的名称) 和 cls(类对象)
  • 有两个 method_list_t类型的方法列表:分类中实现的实例方法+类方法
  • 一个protocol_list_t类型的协议列表:分类中实现的协议
  • 一个prop_list_t类型的属性列表:分类中定义的属性,一般在分类中添加的属性都是通- 过关联对象来实现
  • 需要注意的是,分类中的属性是没有setter、getter方法

分类的数据加载

1)methodizeClass -> objc::unattachedCategories.attachToClass(加入两次时会进入attachCategories)-> attachCategories;
2)_read_images -> load_categories_nolock ->attachCategories;
会进入分类操作,会有这样一个方法attachCategories,它是将方法列表、属性和协议从分类附加到类,这里就对分类的数据进行加载。

attachToClass

void attachToClass(Class cls, Class previously, int flags)
    {
        runtimeLock.assertLocked();
        ASSERT((flags & ATTACH_CLASS) ||
               (flags & ATTACH_METACLASS) ||
               (flags & ATTACH_CLASS_AND_METACLASS));

        const char *mangledName  = cls->mangledName();
        
        auto &map = get();
        auto it = map.find(previously);
        if (it != map.end()) {  // 两次加载类时会进入
            category_list &list = it->second;
            if (flags & ATTACH_CLASS_AND_METACLASS) {
                int otherFlags = flags & ~ATTACH_CLASS_AND_METACLASS;
                //   对象方法
                attachCategories(cls, list.array(), list.count(), otherFlags | ATTACH_CLASS);
                // 类方法
                attachCategories(cls->ISA(), list.array(), list.count(), otherFlags | ATTACH_METACLASS);
            } else {
                // 元类情况
                attachCategories(cls, list.array(), list.count(), flags);
            }
            map.erase(it);
        }
    }

循环中会执行两次attachCategories, 原因是会执行对象方法,类方法。

attachCategories

// Attach method lists and properties and protocols from categories to a class.
// Assumes the categories in cats are all loaded and sorted by load order, 
// oldest categories first.
static void
attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
                 int flags)
{
    if (slowpath(PrintReplacedMethods)) {
        printReplacements(cls, cats_list, cats_count);
    }
    if (slowpath(PrintConnecting)) {
        _objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
                     cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
                     cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
    }

    /*
     * Only a few classes have more than 64 categories during launch.
     * This uses a little stack, and avoids malloc.
     *
     * Categories must be added in the proper order, which is back
     * to front. To do that with the chunking, we iterate cats_list
     * from front to back, build up the local buffers backwards,
     * and call attachLists on the chunks. attachLists prepends the
     * lists, so the final result is in the expected order.
     */
    constexpr uint32_t ATTACH_BUFSIZ = 64;
    method_list_t   *mlists[ATTACH_BUFSIZ];
    property_list_t *proplists[ATTACH_BUFSIZ];
    protocol_list_t *protolists[ATTACH_BUFSIZ];

    uint32_t mcount = 0;
    uint32_t propcount = 0;
    uint32_t protocount = 0;
    bool fromBundle = NO;
    bool isMeta = (flags & ATTACH_METACLASS);
    auto rwe = cls->data()->extAllocIfNeeded();  // 初始化rwe 
  
    const char *mangledName  = cls->mangledName();
    const char *LGPersonName = "LGPerson";
    if (strcmp(mangledName, LGPersonName) == 0) {
        bool kc_isMeta = cls->isMetaClass();
        auto kc_rw = cls->data();
        auto kc_ro = kc_rw->ro();
        if (!kc_isMeta) {
            printf("%s: 这个是我要研究的 %s \n",__func__,LGPersonName);
        }
    }
    
    for (uint32_t i = 0; i < cats_count; i++) {
        auto& entry = cats_list[I];
         // 会倒序查
         method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
        if (mlist) {
            // 由上一章可知是调用了``prepareMethodLists``对方法进行了序列化的,按照方法的``sel``地址进行了排序。 

            if (mcount == ATTACH_BUFSIZ) {
                prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
                rwe->methods.attachLists(mlists, mcount);
                mcount = 0;
            }
            // ATTACH_BUFSIZ = 64; 允许容纳64,代表容量
            mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
            fromBundle |= entry.hi->isBundle();
        }
        property_list_t *proplist =
            entry.cat->propertiesForMeta(isMeta, entry.hi);
        if (proplist) {
            if (propcount == ATTACH_BUFSIZ) {
                rwe->properties.attachLists(proplists, propcount);
                propcount = 0;
            }
            proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
        }
        protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
        if (protolist) {
            if (protocount == ATTACH_BUFSIZ) {
                rwe->protocols.attachLists(protolists, protocount);
                protocount = 0;
            }
            protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
        }
    }
    if (mcount > 0) {
        prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount, NO, fromBundle);
        //  mlists + ATTACH_BUFSIZ - mcount:进行内存平移,依次读取,再添加到rwe中
        rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);
        if (flags & ATTACH_EXISTING) flushCaches(cls);
    }
    rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);
    rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}
  • rwe->extAllocIfNeeded: 为rwe初始化,之前的流程没有值,从这里可以发现,原来本类中有分类需要加载时才会对rwe进行赋值。
  • attachLists
    void attachLists(List* const * addedLists, uint32_t addedCount) {
        if (addedCount == 0) return;
        if (hasArray()) {
            // many lists -> many lists  加载非常多的list时
            uint32_t oldCount = array()->count;
            uint32_t newCount = oldCount + addedCount;
            setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
            array()->count = newCount;
            memmove(array()->lists + addedCount, array()->lists, 
                    oldCount * sizeof(array()->lists[0]));
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
        else if (!list  &&  addedCount == 1) {
            // 0 lists -> 1 list 第一次加载时
            list = addedLists[0];
        } 
        else {
            // 1 list -> many lists,第二次加载有很多list时
            List* oldList = list;
            uint32_t oldCount = oldList ? 1 : 0;
            uint32_t newCount = oldCount + addedCount;
            setArray((array_t *)malloc(array_t::byteSize(newCount)));
            array()->count = newCount;
            if (oldList) array()->lists[addedCount] = oldList;
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
    }

当第二次情况发生时,会新建一个list,然后复制之前的oldList,把oldlist插入到新建list的后面,原因是为了性能,遍历oldlist再去添加newlist会比新建更耗费性能
rwe->methods.attachListsrwe->protocols.attachListsrwe->properties.attachLists就是对rwe赋值操作,目的是为了把分类中的数据在本类中添加属性、方法、协议。
memmove将内容从oldcount位置挨个添加old数据,越后面添加的排最前面。

总结一下attachCategories流程

attachCategories流程

上一章中在类中实现了+load,就对懒加载类和非懒加载类进行了区别。现在定义两个分类LGPerson+LGALGPerson+LGA。都在其中实现+load, 如下:

// LGPerson.h
@implementation LGPerson

+ (void)load{
    
}
- (void)kc_instanceMethod3{
    NSLog(@"%s",__func__);
}
- (void)kc_instanceMethod1{
    NSLog(@"%s",__func__);
}
- (void)kc_instanceMethod2{
    NSLog(@"%s",__func__);
}
+ (void)kc_sayClassMethod{
    NSLog(@"%s",__func__);
}
@end
// LGPerson+LGA.m 代码
@implementation LGPerson (LGA)
+ (void)load{
    
}
- (void)kc_instanceMethod1{
    NSLog(@"%s",__func__);
}
- (void)cateA_2{
    NSLog(@"%s",__func__);
}
- (void)cateA_1{
    NSLog(@"%s",__func__);
}
- (void)cateA_3{
    NSLog(@"%s",__func__);
}
@end
/* -------------------------------*/
// LGPerson+LGB.m 代码
@implementation LGPerson (LGB)

+ (void)load{
    
}
- (void)kc_instanceMethod1{
    NSLog(@"%s",__func__);
}
- (void)cateB_2{
    NSLog(@"%s",__func__);
}
- (void)cateB_1{
    NSLog(@"%s",__func__);
}
- (void)cateB_3{
    NSLog(@"%s",__func__);
}
@end

主类和分类是否实现load,就会有以下4种情况:

  • 1.主类 实现load,分类 实现load:全部都从load_image加载到数据
    遍历list
    依次遍历时,就会打印出两个分类数据。就是上面分析attachCategoriesload_iamges流程。具体调试下会是一下两个情况:
    1)从map_images -> map_images_nolock -> _read_images -> readClass -> _getObjc2NonlazyClassList -> realizeClassWithoutSwift -> methodizeClass -> attachToClass,此时的mlists是一维数组,然后走到load_images部分。
    2)从load_images --> loadAllCategories -> load_categories_nolock -> load_categories_nolock -> attachCategories -> attachLists,此时的mlists是二维数组
  • 2.主类 实现load,分类未实现load:只要一个分类是非懒加载类,则该类的所有分类都会是非懒加载分类。在read_images就加载数据

  • 3.主类、分类均未实现load:则在第一次消息的时候再加载数据

    read_class加载
    当主类、分类均未实现load都未实现load时,read_class 的baseMethods有16个,(LGPerson的8个,包括了两属性的set,get方法,两个分类各4个),这说明在程序readClass时就能从Mach-O中读取data数据了。说明这是在编译时期就完成了方法的加载,在类第一次消息的流程中就加载了数据。
  • 4.主类未实现load,分类实现load:迫使主类提前加载数据
    readClassbaseMethods读到了8个方法LGPerson的8个方法,分类的都没有。

    image.png
四种情况总结分析
主类分类搭配加载

类加载总结:流程:在_read_images -> readClass过程中,realizeClassWithoutSwift之前获取到类的地址name,进入realizeClassWithoutSwift之后,将data数据从ro传递到了rw,确定本类父类、元类的继承链关系过程,并在methodizeClass中对类的属性、方法、协议列表进行序列化,在经过attachCategoriesrwe添加了分类属性、方法、协议,最后返回类的信息。由此完成了整个类的信息加载。

相关文章

网友评论

    本文标题:OC底层原理13-类的加载(二)

    本文链接:https://www.haomeiwen.com/subject/dortmktx.html