一、需要使用库opencv
二、代码解读
1.关于Mat 的说明参见:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/core/mat%20-%20the%20basic%20image%20container/mat%20-%20the%20basic%20image%20container.html
mat 包含两部分:信息头和矩阵指针
2.opencv相关函数:
引用:https://blog.csdn.net/eternity1118_/article/details/51333364
3.代码及注释
feature_extraction.cpp:
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
//看懂了
using namespace std;
using namespace cv;
int main ( int argc, char** argv )
{
/*
if ( argc != 3 )
{
cout<<"usage: feature_extraction img1 img2"<<endl;
return 1;
}
*/
//-- 读取彩色图像,这里代码做了小改动,程序启动时就不用输入图像名称了
const char* imagename1;//argv==NULL
const char* imagename2;//argv==NULL
imagename1="1.png";
imagename2="2.png";
Mat img_1 = imread ( imagename1, CV_LOAD_IMAGE_COLOR );
Mat img_2 = imread ( imagename2, CV_LOAD_IMAGE_COLOR );
//-- 初始化
std::vector<KeyPoint> keypoints_1, keypoints_2;//keypoint是opencv里的数据类型
Mat descriptors_1, descriptors_2;//描述子
Ptr<FeatureDetector> detector = ORB::create();//opencv检测器orb
Ptr<DescriptorExtractor> descriptor = ORB::create();//描述orb
// Ptr<FeatureDetector> detector = FeatureDetector::create(detector_name);
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create(descriptor_name);
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" );//匹配方法汉明距离
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect ( img_1,keypoints_1 );//固定用法,检测图一中的角点位置
detector->detect ( img_2,keypoints_2 );
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute ( img_1, keypoints_1, descriptors_1 );//计算图一特征点的描述子
descriptor->compute ( img_2, keypoints_2, descriptors_2 );
Mat outimg1;
drawKeypoints( img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );//把图一的keypoint画出来
imshow("ORB特征点",outimg1);
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> matches;
//BFMatcher matcher ( NORM_HAMMING );
matcher->match ( descriptors_1, descriptors_2, matches );
//-- 第四步:匹配点对筛选
double min_dist=10000, max_dist=0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for ( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if ( dist < min_dist ) min_dist = dist;
if ( dist > max_dist ) max_dist = dist;
}
// 仅供娱乐的写法
min_dist = min_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;
max_dist = max_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;
printf ( "-- Max dist : %f \n", max_dist );
printf ( "-- Min dist : %f \n", min_dist );
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
std::vector< DMatch > good_matches;
for ( int i = 0; i < descriptors_1.rows; i++ )
{
if ( matches[i].distance <= max ( 2*min_dist, 30.0 ) )
{
good_matches.push_back ( matches[i] );
}
}
//-- 第五步:绘制匹配结果
Mat img_match;
Mat img_goodmatch;
drawMatches ( img_1, keypoints_1, img_2, keypoints_2, matches, img_match );
drawMatches ( img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch );
imshow ( "所有匹配点对", img_match );
imshow ( "优化后匹配点对", img_goodmatch );
waitKey(0);
return 0;
}
程序运行可获得三个图像窗口:
特征匹配
网友评论