美文网首页
7.2 实践:特征提取和匹配

7.2 实践:特征提取和匹配

作者: 陌上尘离 | 来源:发表于2018-04-27 20:57 被阅读0次

    一、需要使用库opencv

    二、代码解读

    1.关于Mat 的说明参见:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/core/mat%20-%20the%20basic%20image%20container/mat%20-%20the%20basic%20image%20container.html
    mat 包含两部分:信息头和矩阵指针
    2.opencv相关函数:
    引用:https://blog.csdn.net/eternity1118_/article/details/51333364
    3.代码及注释


    feature_extraction.cpp:

    #include <opencv2/core/core.hpp>
    #include <opencv2/features2d/features2d.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <iostream>
    
    
    //看懂了
    using namespace std;
    using namespace cv;
    
    int main ( int argc, char** argv )
     {
      /*
        if ( argc != 3 )
        {
            cout<<"usage: feature_extraction img1 img2"<<endl;
            return 1;
        }
        */
        //-- 读取彩色图像,这里代码做了小改动,程序启动时就不用输入图像名称了
        const char* imagename1;//argv==NULL
        const char* imagename2;//argv==NULL
        imagename1="1.png";
        imagename2="2.png";
        Mat img_1 = imread ( imagename1, CV_LOAD_IMAGE_COLOR );
        Mat img_2 = imread ( imagename2, CV_LOAD_IMAGE_COLOR );
    
        //-- 初始化
        std::vector<KeyPoint> keypoints_1, keypoints_2;//keypoint是opencv里的数据类型
        Mat descriptors_1, descriptors_2;//描述子
        Ptr<FeatureDetector> detector = ORB::create();//opencv检测器orb
        Ptr<DescriptorExtractor> descriptor = ORB::create();//描述orb
        // Ptr<FeatureDetector> detector = FeatureDetector::create(detector_name);
          // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create(descriptor_name);
        Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create ( "BruteForce-Hamming" );//匹配方法汉明距离
    
        //-- 第一步:检测 Oriented FAST 角点位置
        detector->detect ( img_1,keypoints_1 );//固定用法,检测图一中的角点位置
        detector->detect ( img_2,keypoints_2 );
    
        //-- 第二步:根据角点位置计算 BRIEF 描述子
        descriptor->compute ( img_1, keypoints_1, descriptors_1 );//计算图一特征点的描述子
        descriptor->compute ( img_2, keypoints_2, descriptors_2 );
    
        Mat outimg1;
        drawKeypoints( img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );//把图一的keypoint画出来
       imshow("ORB特征点",outimg1);
    
        //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
        vector<DMatch> matches;
        //BFMatcher matcher ( NORM_HAMMING );
        matcher->match ( descriptors_1, descriptors_2, matches );
    
        //-- 第四步:匹配点对筛选
        double min_dist=10000, max_dist=0;
    
        //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
        for ( int i = 0; i < descriptors_1.rows; i++ )
        {
            double dist = matches[i].distance;
            if ( dist < min_dist ) min_dist = dist;
            if ( dist > max_dist ) max_dist = dist;
        }
    
        // 仅供娱乐的写法
        min_dist = min_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;
        max_dist = max_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;
    
        printf ( "-- Max dist : %f \n", max_dist );
        printf ( "-- Min dist : %f \n", min_dist );
    
        //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
        std::vector< DMatch > good_matches;
        for ( int i = 0; i < descriptors_1.rows; i++ )
        {
            if ( matches[i].distance <= max ( 2*min_dist, 30.0 ) )
            {
                good_matches.push_back ( matches[i] );
            }
        }
    
        //-- 第五步:绘制匹配结果
        Mat img_match;
        Mat img_goodmatch;
        drawMatches ( img_1, keypoints_1, img_2, keypoints_2, matches, img_match );
        drawMatches ( img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch );
        imshow ( "所有匹配点对", img_match );
        imshow ( "优化后匹配点对", img_goodmatch );
        waitKey(0);
    
        return 0;
    }
    

    程序运行可获得三个图像窗口:


    特征匹配

    相关文章

      网友评论

          本文标题:7.2 实践:特征提取和匹配

          本文链接:https://www.haomeiwen.com/subject/dsvblftx.html