美文网首页
Diffbind差异片段分析

Diffbind差异片段分析

作者: pudding815 | 来源:发表于2023-04-03 21:12 被阅读0次

    搞笑瞬间1:warning警告解决不了

    搞笑瞬间2:就一个差异片段

    我怀疑是样本的FRIP值太低了造成的

    代码记录
    library(DiffBind)
    library(stats)

    -------------构建包含bam文件和callpeak文件的数据框---------------

    SampleID <- c(paste("Aging",1:3,sep = ""),paste("Young",1:3,sep = ""))
    Tissue <- rep(c("Aging","Young"),c(3,3))
    Factor <- rep("ATAC",times = 6)
    Condition <- rep("same",times = 6)
    Treatment <- rep("full-media",times = 6)
    Replicate <- rep(1:3,length = 6)
    PeakCaller <- rep("bed",times = 6)
    bam_file_path <- "C:/文件夹数据重要一万分丢了就死人了/生信学习/otherdata/MLZ/callpeak"
    bamReads <- c(paste(bam_file_path,"Aging1.last.bam",sep = "/"),
    paste(bam_file_path,"Aging2.last.bam",sep = "/"),
    paste(bam_file_path,"Aging3.last.bam",sep = "/"),
    paste(bam_file_path,"Young1.last.bam",sep = "/"),
    paste(bam_file_path,"Young2.last.bam",sep = "/"),
    paste(bam_file_path,"Young3.last.bam",sep = "/"))
    peak_file_path <- "C:/文件夹数据重要一万分丢了就死人了/生信学习/otherdata/MLZ/callpeak"
    Peaks <- c(paste(peak_file_path,"Aging1_peaks.narrowPeak",sep = "/"),
    paste(peak_file_path,"Aging2_peaks.narrowPeak",sep = "/"),
    paste(peak_file_path,"Aging3_peaks.narrowPeak",sep = "/"),
    paste(peak_file_path,"Young1_peaks.narrowPeak",sep = "/"),
    paste(peak_file_path,"Young2_peaks.narrowPeak",sep = "/"),
    paste(peak_file_path,"Young3_peaks.narrowPeak",sep = "/"))
    samples <- data.frame(SampleID,Tissue,Factor,Condition,Treatment,Replicate,bamReads,Peaks,PeakCaller)

    -----------------读取数据---------------------

    ATAC <- dba(sampleSheet = samples,minOverlap = 2)

    minoverlap表示该参数值为正整数n

    表示将那些至少在n个样本中出现的peak纳入分析,其它peak舍弃

    命令说明

    1. 该命令将metadata中的所有样本信息一次性读入,并构建一个DBA对象

    2. DBA对象可以理解为DiffBind用来存储信息的特定格式,本质上是一个S3类的列表,可以使用"$"符访问其中元素

    3. 该DBA对象中存储大量信息,包括metadata中直接给出的,还有通过整合metadta得到的新的信息,其中重要的有"masks",在此例中,访问方式为h3k27ac$masks

    4. 该命令在读入各样本peak之后,会根据minOverlap参数,去掉不符合条件的peak之后,再对所有剩余peak进行merge,有重叠的会被merge到一起形成新的peak,merge之后形成一个一致性peak(consensus peaksets)

    5. 直接输入变量名可以查看该DBA对象的基本信息,要想查看该对象中所以信息,使用str(h3k27ac)

    查看该DBA对象的基本信息

    ATAC

    6 Samples, 33984 sites in matrix (75392 total):

    ID Tissue Factor Condition Treatment Replicate Intervals

    1 Aging_1 Aging ATAC same full-media 1 18818

    基本信息说明

    1. 该信息中将peak文件和bam文件的位置隐去了,元数据中的其它信息都会展示在这里

    2. 数据中添加了每个peak文件中的peak数目

    3. 首行信息所表示的意思是:共读取了6个样本,将至少出现在三个样本中的所有peak进行merge之后共产生33984个peak,而在不筛选的情况下,所有peak在merge之后形成75392个peak

    4. 虽然输入ATAC之后只显示了很少的信息,但实际上该数据中包含非常多的信息,使用str(ATAC)就可以查看所有信息

    --------------------Occupancy analysis-------------------------------------

    pdf("occupancy_plot.pdf")
    plot(ATAC)
    dev.off()

    该热图所表示的样本之间的相关性是根据各样本的peak位置进行计算的

    计算相关性时所用的peak,是根据dba函数中minOverlap参数读取并进行了merge之后的一致性peak

    ------------------Counting reads--------------------------------------------

    ATAC <- dba.count(ATAC,minOverlap = 2)

    这里的参数minOverlap的值,与dba中该参数的值可以不同,既可以比之前大,也可以比之前小。

    查看基本信息

    ATAC

    6 Samples, 33869 sites in matrix:

    ID Tissue Factor Replicate Caller Intervals FRiP

    Aging_1 Aging ATAC same full-media 1 2615279 0.07

    基本信息说明

    1. 该信息与之前数据读取之后的结果十分相似,差别仅是多了一列内容

    2. 最后一列表示在peak区域的reads在占所有bam文件中所有reads的比例,当然越高越高,表示背景越低

    --------------根据reads count结果计算样本相关性并绘图--------------------------

    pdf("affinity_plot.pdf")
    plot(ATAC)
    dev.off()

    该热图所表示的样本之间的相关性是根据各样本在一致性peak上的信号强度(reads count数)计算的

    ------------------------------创建分组-----------------------------------

    ATAC <- dba.contrast(ATAC,categories = DBA_TISSUE)
    ATAC

    Design: [~Tissue] | 1 Contrast:

    Factor Group Samples Group2 Samples2

    1 Tissue Young 3 Aging 3

    多个分组信息

    -------------------------------差异peak分析----------------------------------

    ATAC <- dba.analyze(ATAC,method = DBA_ALL_METHODS)

    默认情况是基于DEseq2, 可以设置参数method=DBA_EDGER选择edgeR,或者设置method=DBA_ALL_METHODS。每种方法都会评估差异结果的p-vaue和FDR。

    用于差异分析的peak,来自于dba.count函数中进行了reads count计数的一致性peak

    pdf(file="overlap_DESeq2_edgeR.pdf",width = 7,height = 7)
    dba.plotVenn(ATAC,contrast=1,method=DBA_ALL_METHODS)
    dev.off()
    ATAC

    6 Samples, 33096 sites in matrix:

    Design: [~Tissue] | 1 Contrast:

    Factor Group Samples Group2 Samples2 DB.edgeR DB.DESeq2

    1 Tissue Young 3 Aging 3 200 1

    找到的差异peak共有1个????但是DB。edgeR有200

    默认情况下,peak具有显著差异的标准是 FDR<=0.05

    comp1.edgeR <- dba.report(ATAC, method=DBA_EDGER, contrast = 1, th=1)
    out <- as.data.frame(comp1.edgeR)
    write.table(out, file="results_edgeR.txt", sep="\t", quote=F, col.names = NA)

    edge.bed <- out[ which(out$FDR < 0.05),
    c("seqnames", "start", "end", "strand", "Fold")]
    write.table(edge.bed, file="results_edgeR_sig.bed", sep="\t", quote=F, row.names=F, col.names=F)

    ---------------根据差异peak绘图---------------------------

    pdf("diff_plot.pdf")
    plot(ATAC, contrast = 1)
    dev.off()

    ------------结果报告和绘图------------------------------------

    ATAC.DB <- dba.report(ATAC)
    ATAC.DB.DF <- as.data.frame(ATAC.DB)
    write.table(ATAC.DB.DF,file = "diff_peaks.txt",
    quote = F,sep = "\t",
    row.names = F,col.names = T)
    pdf("volcano_plot.pdf")
    dba.plotVolcano(ATAC)
    dev.off()

    相关文章

      网友评论

          本文标题:Diffbind差异片段分析

          本文链接:https://www.haomeiwen.com/subject/dtsjddtx.html