美文网首页
2019-04-28 梯度下降

2019-04-28 梯度下降

作者: 卢晨耀 | 来源:发表于2019-04-28 15:48 被阅读0次

转自知乎 https://zhuanlan.zhihu.com/p/32230623


首先定义:待优化参数:w,目标函数:f(w) ,初始学习率 :\alpha

而后,开始进行迭代优化。在每个epoch t 

计算目标函数关于当前参数的梯度:  g_{t}={\Delta f(w_{t})}

根据历史梯度计算一阶动量和二阶动量:

m_{t}=\phi (g_1,g_2,…,g_t)V_t=\psi (g_1,g_2,...,g_t)

计算当前时刻的下降梯度: \eta =\alpha \cdot m_{t}/\sqrt{V_t}

根据下降梯度进行更新: w_{t+1}=w_{t}-\eta

掌握了这个框架,你可以轻轻松松设计自己的优化算法。步骤3、4对于各个算法都是一致的,主要的差别就体现在1和2上

相关文章

网友评论

      本文标题:2019-04-28 梯度下降

      本文链接:https://www.haomeiwen.com/subject/duzqnqtx.html