美文网首页
序列比对(十三)——后验解码

序列比对(十三)——后验解码

作者: 生信了 | 来源:发表于2019-11-14 10:50 被阅读0次

原创: hxj7

本文介绍了如何利用后验概率进行解码,可称为后验解码。

前文《序列比对(12)计算后验概率》介绍了如何计算某一位置可能状态的后验概率。那么可以据此找到某一位置最有可能的状态。即


image

从上面的公式可以看出,有两种方法求解某一位置的最可能状态。如果是依据公式(1),先计算出后验概率,然后找到其中最大后验概率对应的状态;如果是依据公式(3),无需计算后验概率,比较简单。

本文所用代码采用了公式(1)的方法,虽然稍嫌麻烦,但是可以在原先的代码基础上稍加增改即可。运行效果如下:


image

具体代码如下:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
//#define MIN_LOG_VALUE -15
//#define SAFE_EXP(x) ((x) < MIN_LOG_VALUE ? 0 : exp(x))

typedef char State;
typedef char Result;
State state[] = {'F', 'L'};   // 所有的可能状态
Result result[] = {'1', '2', '3', '4', '5', '6'};   // 所有的可能符号
double init[] = {0.9, 0.1};    // 初始状态的概率向量
double emission[][6] = {   // 发射矩阵:行对应着状态,列对应着符号
  1.0/6, 1.0/6, 1.0/6, 1.0/6, 1.0/6, 1.0/6,
  0.1, 0.1, 0.1, 0.1, 0.1, 0.5
};
double trans[][2] = {   // 转移矩阵:行和列都是状态
  0.95, 0.05,
  0.1, 0.9
};
const int nstate = 2;
const int nresult = 6;

double** fscore;  // 前向算法的得分矩阵
double** bscore;  // 后向算法的得分矩阵
double* scale;   // 缩放因子向量
double logScaleSum;

int random(double* prob, const int n);
void randSeq(State* st, Result* res, const int n);
int getResultIndex(Result r);
void printState(State* st, const int n);
void printResult(Result* res, const int n);
double forward(Result* res, const int n);
double backward(Result* res, const int n);
double** getPostProb(const int n);
void postDecode(double** prob, const int n);

int main(void) {
  int i;
  int n = 5;
  State* rst;   // 一串随机状态序列
  Result* rres;  // 一串随机符号序列
  double** postProb;
  if ((rst = (State*) malloc(sizeof(State) * n)) == NULL || \
      (rres = (Result*) malloc(sizeof(Result) * n)) == NULL || \
      (scale = (double*) malloc(sizeof(double) * n)) == NULL || \
      (fscore = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
      (bscore = (double**) malloc(sizeof(double*) * nstate)) == NULL) {
    fputs("Error: out of space!\n", stderr);
    exit(1);
  }
  for (i = 0; i < nstate; i++) {
    if ((fscore[i] = (double*) malloc(sizeof(double) * n)) == NULL || \
        (bscore[i] = (double*) malloc(sizeof(double) * n)) == NULL) {
      fputs("Error: out of space!\n", stderr);
      exit(1);
    }
  }
  randSeq(rst, rres, n);
  printState(rst, n);
  printResult(rres, n);
  forward(rres, n);
  backward(rres, n);
  postProb = getPostProb(n);
  postDecode(postProb, n);
  free(rst);
  free(rres);
  free(scale);
  free(fscore);
  free(bscore);
  for (i = 0; i < nstate; i++)
    free(postProb[i]);
  free(postProb);
}

// 根据一个概率向量从0到n-1随机抽取一个数
int random(double* prob, const int n) {
  int i;
  double p = rand() / 1.0 / (RAND_MAX + 1);
  for (i = 0; i < n - 1; i++) {
    if (p <= prob[i])
      break;
    p -= prob[i];
  }
  return i;
}

// 根据转移矩阵和发射矩阵生成一串随机状态和符号
void randSeq(State* st, Result* res, const int n) {
  int i, ls, lr;
  srand((unsigned int) time(NULL));
  ls = random(init, nstate);
  lr = random(emission[ls], nresult);
  st[0] = state[ls];
  res[0] = result[lr];
  for (i = 1; i < n; i++) {
    ls = random(trans[ls], nstate);
    lr = random(emission[ls], nresult);
    st[i] = state[ls];
    res[i] = result[lr];
  }
}

int getResultIndex(Result r) {
  return r - result[0];
}

// 前向算法计算P(x)
double forward(Result* res, const int n) {
  int i, l, k, idx;
  double logpx;
  // 缩放因子向量初始化
  for (i = 0; i < n; i++)
    scale[i] = 0;
  // 计算第0列分值
  idx = getResultIndex(res[0]);
  for (l = 0; l < nstate; l++) {
    fscore[l][0] = emission[l][idx] * init[l];
    scale[0] += fscore[l][0];
  }
  for (l = 0; l < nstate; l++)
    fscore[l][0] /= scale[0];
  // 计算从第1列开始的各列分值
  for (i = 1; i < n; i++) {
    idx = getResultIndex(res[i]);
    for (l = 0; l < nstate; l++) {
      fscore[l][i] = 0;
      for (k = 0; k < nstate; k++) {
        fscore[l][i] += fscore[k][i - 1] * trans[k][l];
      }
      fscore[l][i] *= emission[l][idx];
      scale[i] += fscore[l][i];
    }
    for (l = 0; l < nstate; l++)
      fscore[l][i] /= scale[i];
  }
  // P(x) = product(scale)
  // P(x)就是缩放因子向量所有元素的乘积
  logpx = 0;
  for (i = 0; i < n; i++)
    logpx += log(scale[i]);
  printf("forward: logP(x) = %f\n", logpx);
  logScaleSum = logpx;
/*
  for (l = 0; l < nstate; l++) {
    for (i = 0; i < n; i++)
      printf("%f ", fscore[l][i]);
    printf("\n");
  }
*/
  return exp(logpx);
}

// 后向算法计算P(x)
// backward算法中使用的缩放因子和forward中的一样
double backward(Result* res, const int n) {
  int i, l, k, idx;
  double tx, logpx;
  // 计算最后一列分值
  for (l = 0; l < nstate; l++)
    bscore[l][n - 1] = 1 / scale[n - 1];
  // 计算从第n - 2列开始的各列分值
  for (i = n - 2; i >= 0; i--) {
    idx = getResultIndex(res[i + 1]);
    for (k = 0; k < nstate; k++) {
      bscore[k][i] = 0;
      for (l = 0; l < nstate; l++) {
        bscore[k][i] += bscore[l][i + 1] * trans[k][l] * emission[l][idx];
      }
    }
    for (l = 0; l < nstate; l++)
      bscore[l][i] /= scale[i];
  }
  // 计算P(x)
  tx = 0;
  idx = getResultIndex(res[0]);
  for (l = 0; l < nstate; l++)
    tx += init[l] * emission[l][idx] * bscore[l][0];
  logpx = log(tx) + logScaleSum;
  printf("backward: logP(x) = %f\n", logpx);
/*
  for (l = 0; l < nstate; l++) {
    for (i = 0; i < n; i++)
      printf("%f ", bscore[l][i]);
    printf("\n");
  }
*/
  return exp(logpx);  
}

// 计算后验概率
double** getPostProb(const int n) {
  int i, k;
  double** postProb;
  //double logdiff;
  if ((postProb = (double**) malloc(sizeof(double*) * nstate)) == NULL) {
    fputs("Error: out of space!\n", stderr);
    exit(1);  
  }
  for (k = 0; k < nstate; k++) {
    if ((postProb[k] = (double*) malloc(sizeof(double) * n)) == NULL) {
      fputs("Error: out of space!\n", stderr);
      exit(1);
    }
  }
  // 计算后验概率
  for (i = 0; i < n; i++) {
    for (k = 0; k < nstate; k++) {
      postProb[k][i] = scale[i] * fscore[k][i] * bscore[k][i];
    }
  }
  printf("\n");
  printf("Posterior Probabilities:\n");
  for (k = 0; k < nstate; k++) {
    for (i = 0; i < n; i++)
      printf("%f ", postProb[k][i]);
    printf("\n");
  }
  return postProb;
}

void postDecode(double** prob, const int n) {
  int i, k;
  double maxCol;
  int idx;
  State* st;
  if ((st = (State*) malloc(sizeof(State) * n)) == NULL) {
    fputs("Error: out of space!\n", stderr);
    exit(1);    
  }
  for (i = 0; i < n; i++) {
    idx = 0;
    maxCol = prob[0][i];
    for (k = 1; k < nstate; k++)
      if (prob[k][i] > maxCol) {
        maxCol = prob[k][i];
        idx = k;
      }
    st[i] = state[idx];
  }
  printf("\n");
  printf("Posterior Decode:\n");
  printState(st, n);
  free(st);
}

void printState(State* st, const int n) {
  int i;
  for (i = 0; i < n; i++)
    printf("%c", st[i]);
  printf("\n");
}

void printResult(Result* res, const int n) {
  int i;
  for (i = 0; i < n; i++)
    printf("%c", res[i]);
  printf("\n");  
}

(公众号:生信了)

相关文章

网友评论

      本文标题:序列比对(十三)——后验解码

      本文链接:https://www.haomeiwen.com/subject/dwigbctx.html