美文网首页我爱编程
tensorflow构建神经网络对于mnist进行判断

tensorflow构建神经网络对于mnist进行判断

作者: 大梦一场三十一 | 来源:发表于2018-03-05 12:40 被阅读0次

    以下是根据莫烦Python的程序
    https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-01-classifier/
    还有一个作者写的挺好的
    http://blog.csdn.net/wuyzhen_csdn/article/details/64920773
    初步构建出基于tensorflow的一个简单的神经网络
    运用的数据是mnist手写字符库
    构建了三层的网络 输入层,隐藏层,输出层
    代码如下

    import tensorflow as tf
    #下载或者加载mnist手写库
    from tensorflow.examples.tutorials.mnist import input_data
    
    # number 1 to 10 data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    def add_layer(inputs, in_size, out_size, activation_function=None,):
       # add one more layer and return the output of this layer
       Weights = tf.Variable(tf.random_normal([in_size, out_size]))
       biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,)
       Wx_plus_b = tf.matmul(inputs, Weights) + biases
       if activation_function is None:
           outputs = Wx_plus_b
       else:
           outputs = activation_function(Wx_plus_b,)
       return outputs
    
    #计算识别的准确度
    def compute_accuracy(v_xs, v_ys):
       global prediction
       y_pre = sess.run(prediction, feed_dict={xs: v_xs})
       correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
       accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
       result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
       return result
    
    # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32,[None,784]) #28*28
    ys = tf.placeholder(tf.float32,[None,10])  #10输出
    
    #add output layer
    
    prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax)
    
    #the error between prediction and real data
    #loss函数(即最优化目标函数)选用交叉熵函数
    #交叉熵用来衡量预测值和真实值的相似程度,如果完全相同,它们的交叉熵等于零。
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                                 reduction_indices=[1]))
    ##tf.log计算y中元素的对数,tf.reduce_sum计算y中第2维元素的相加
    ##(y为tensor with shape[None, 10]),因为参数reduction_indices=[1]
    ##最后tf.reduce_mean计算平均值,在源代码中我们不使用该方程,
    ##因为它数字上不是稳定的对于非规范化的逻辑,
    ##使用tf.nn.softmax_cross_entropy_with_logits
    ##  cross_entropy = tf.reduce_mean(  
    ##      tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))  
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    
    ##sess = tf.Session()
    ###现在可以运行模型,通过InteractiveSession
    sess = tf.InteractiveSession();
    
    # important step
    # tf.initialize_all_variables() no long valid from
    # 2017-03-02 if using tensorflow >= 0.12
    if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
       init = tf.initialize_all_variables()
    else:
       init = tf.global_variables_initializer()
    sess.run(init)
    
    for i in range(1000):
       batch_xs, batch_ys = mnist.train.next_batch(100)
       sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
       if i % 50 == 0:
           print(compute_accuracy(
               mnist.test.images, mnist.test.labels))
    
    

    相关文章

      网友评论

        本文标题:tensorflow构建神经网络对于mnist进行判断

        本文链接:https://www.haomeiwen.com/subject/eaeqfftx.html