美文网首页WGCNA分析
WGCNA分析 | 全流程分析代码 | 代码一

WGCNA分析 | 全流程分析代码 | 代码一

作者: 小杜的生信筆記 | 来源:发表于2023-02-18 15:52 被阅读0次

    注意:今天的教程比较长,请规划好你的时间。本文是付费内容,在本文文末有本教程的全部的代码和示例数据。


    输出结果

    6 7 10

    分析代码

    关于WGCNA分析,如果你的数据量较大,建议使用服务期直接分析,本地分析可能导致R崩掉。

    设置文件位置

    setwd("~/00_WGCNA/20230217_WGCNA/WGCNA_01")
    

    加载分析所需的安装包

    install.packages("WGCNA")
    #BiocManager::install('WGCNA')
    library(WGCNA)
    options(stringsAsFactors = FALSE)
    

    注意,如果你想打开多线程分析,可以使用一下代码

    enableWGCNAThreads() 
    
    取决于你的电脑线程数量

    一、导入基因表达量数据

    ## 读取txt文件格式数据
    WGCNA.fpkm = read.table("ExpData_WGCNA.txt",header=T,
                            comment.char = "",
                            check.names=F)
    ###############
    # 读取csv文件格式
    WGCNA.fpkm = read.csv("ExpData_WGCNA.csv", header = T, check.names = F)
    
    输入数据格式

    数据处理

    dim(WGCNA.fpkm)
    names(WGCNA.fpkm)
    datExpr0 = as.data.frame(t(WGCNA.fpkm[,-1]))
    names(datExpr0) = WGCNA.fpkm$sample;##########如果第一行不是ID命名,就写成fpkm[,1]
    rownames(datExpr0) = names(WGCNA.fpkm[,-1])
    

    过滤数据

    gsg = goodSamplesGenes(datExpr0, verbose = 3)
    gsg$allOK
    if (!gsg$allOK)
    {
      if (sum(!gsg$goodGenes)>0)
        printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", ")))
      if (sum(!gsg$goodSamples)>0)
        printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", ")))
      # Remove the offending genes and samples from the data:
      datExpr0 = datExpr0[gsg$goodSamples, gsg$goodGenes]
    }
    

    过滤低于设定的值的基因

    ##filter
    meanFPKM=0.5  ###--过滤标准,可以修改
    n=nrow(datExpr0)
    datExpr0[n+1,]=apply(datExpr0[c(1:nrow(datExpr0)),],2,mean)
    datExpr0=datExpr0[1:n,datExpr0[n+1,] > meanFPKM]
    # for meanFpkm in row n+1 and it must be above what you set--select meanFpkm>opt$meanFpkm(by rp)
    filtered_fpkm=t(datExpr0)
    filtered_fpkm=data.frame(rownames(filtered_fpkm),filtered_fpkm)
    names(filtered_fpkm)[1]="sample"
    head(filtered_fpkm)
    write.table(filtered_fpkm, file="mRNA.filter.txt",
                row.names=F, col.names=T,quote=FALSE,sep="\t")
    

    Sample cluster

    sampleTree = hclust(dist(datExpr0), method = "average")
    pdf(file = "1.sampleClustering.pdf", width = 15, height = 8)
    par(cex = 0.6)
    par(mar = c(0,6,6,0))
    plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 2,
         cex.axis = 1.5, cex.main = 2)
    ### Plot a line to show the cut
    #abline(h = 180, col = "red")##剪切高度不确定,故无红线
    dev.off()
    

    不过滤数据

    如果你的数据不进行过滤直接进行一下操作,此步与前面的操作相同,任选异种即可。

    ## 不过滤
    ## Determine cluster under the line
    clust = cutreeStatic(sampleTree, cutHeight = 50000, minSize = 10)
    table(clust)
    # clust 1 contains the samples we want to keep.
    keepSamples = (clust!=0)
    datExpr0 = datExpr0[keepSamples, ]
    write.table(datExpr0, file="mRNA.symbol.uniq.filter.sample.txt",
                row.names=T, col.names=T,quote=FALSE,sep="\t")
    
    ###
    #############Sample cluster###########
    sampleTree = hclust(dist(datExpr0), method = "average")
    pdf(file = "1.sampleClustering.filter.pdf", width = 12, height = 9)
    par(cex = 0.6)
    par(mar = c(0,4,2,0))
    plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5,
         cex.axis = 1.5, cex.main = 2)
    ### Plot a line to show the cut
    #abline(h = 50000, col = "red")##剪切高度不确定,故无红线
    dev.off()
    

    二、导入性状数据

    traitData = read.table("TraitData.txt",row.names=1,header=T,comment.char = "",check.names=F)
    allTraits = traitData
    dim(allTraits)
    names(allTraits)
    
    ## 形成一个类似于表达数据的数据框架
    fpkmSamples = rownames(datExpr0)
    traitSamples =rownames(allTraits)
    traitRows = match(fpkmSamples, traitSamples)
    datTraits = allTraits[traitRows,]
    rownames(datTraits)
    collectGarbage()
    

    再次样本聚类

    sampleTree2 = hclust(dist(datExpr0), method = "average")
    # Convert traits to a color representation: white means low, red means high, grey means missing entry
    traitColors = numbers2colors(datTraits, signed = FALSE)
    

    输出样本聚类图

    pdf(file="2.Sample_dendrogram_and_trait_heatmap.pdf",width=20,height=12)
    plotDendroAndColors(sampleTree2, traitColors,
                        groupLabels = names(datTraits),
                        main = "Sample dendrogram and trait heatmap",cex.colorLabels = 1.5, cex.dendroLabels = 1, cex.rowText = 2)
    dev.off()
    

    三、WGCNA分析(后面都是重点)

    筛选软阈值

    enableWGCNAThreads()
    # 设置soft-thresholding powers的数量
    powers = c(1:30)
    sft = pickSoftThreshold(datExpr0, powerVector = powers, verbose = 5)
    

    此步骤是比较耗费时间的,静静等待即可。


    绘制soft Threshold plot

    plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
         xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n",
         main = paste("Scale independence"));
    text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
         labels=powers,cex=cex1,col="red");
    # this line corresponds to using an R^2 cut-off of h
    abline(h=0.8,col="red")
    # Mean connectivity as a function of the soft-thresholding power
    plot(sft$fitIndices[,1], sft$fitIndices[,5],
         xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
         main = paste("Mean connectivity"))
    text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")
    dev.off()
    

    选择softpower

    选择softpower是一个玄学的过程,可以直接使用软件自己认为是最好的softpower值,但是不一定你要获得最好结果;其次,我们自己选择自己认为比较好的softpower值,但是,需要自己不断的筛选。因此,从这里开始WGCNA的分析结果就开始受到不同的影响。

    ## 选择软件认为是最好的softpower值
    #softPower =sft$powerEstimate
    ---
    # 自己设定softpower值
    softPower = 9
    

    继续分析

    adjacency = adjacency(datExpr0, power = softPower)
    

    将邻接转化为拓扑重叠

    这一步建议去服务器上跑,后面的步骤就在服务器上跑吧,数据量太大;如果你的数据量较小,本地也就可以

    TOM = TOMsimilarity(adjacency);
    dissTOM = 1-TOM
    
    geneTree = hclust(as.dist(dissTOM), method = "average");
    

    绘制聚类树(树状图)

    pdf(file="4_Gene clustering on TOM-based dissimilarity.pdf",width=24,height=18)
    plot(geneTree, xlab="", sub="", main = "Gene clustering on TOM-based dissimilarity",
         labels = FALSE, hang = 0.04)
    dev.off()
    

    加入模块

    minModuleSize = 30
    # Module identification using dynamic tree cut:
    dynamicMods = cutreeDynamic(dendro = geneTree, distM = dissTOM,
                                deepSplit = 2, pamRespectsDendro = FALSE,
                                minClusterSize = minModuleSize);
    table(dynamicMods)
    
    # Convert numeric lables into colors
    dynamicColors = labels2colors(dynamicMods)
    table(dynamicColors)
    # Plot the dendrogram and colors underneath
    #sizeGrWindow(8,6)
    pdf(file="5_Dynamic Tree Cut.pdf",width=8,height=6)
    plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut",
                        dendroLabels = FALSE, hang = 0.03,
                        addGuide = TRUE, guideHang = 0.05,
                        main = "Gene dendrogram and module colors")
    dev.off()
    

    合并模块

    做出的WGCNA分析中,具有较多的模块,但是在我们后续的分析中,是使用不到这么多的模块,以及模块越多对我们的分析越困难,那么就必须合并模块信息。具体操作如下。

    MEList = moduleEigengenes(datExpr0, colors = dynamicColors)
    MEs = MEList$eigengenes
    # Calculate dissimilarity of module eigengenes
    MEDiss = 1-cor(MEs);
    # Cluster module eigengenes
    METree = hclust(as.dist(MEDiss), method = "average")
    # Plot the result
    #sizeGrWindow(7, 6)
    pdf(file="6_Clustering of module eigengenes.pdf",width=7,height=6)
    plot(METree, main = "Clustering of module eigengenes",
         xlab = "", sub = "")
    
    ######剪切高度可修改
    MEDissThres = 0.4  
    # Plot the cut line into the dendrogram
    abline(h=MEDissThres, col = "red")
    dev.off()
    

    合并及绘图
     = mergeCloseModules(datExpr0, dynamicColors, cutHeight = MEDissThres, verbose = 3)
    # The merged module colors
    mergedColors = merge$colors
    # Eigengenes of the new merged modules:
    mergedMEs = merge$newMEs
    table(mergedColors)
    
    #sizeGrWindow(12, 9)
    pdf(file="7_merged dynamic.pdf", width = 9, height = 6)
    plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors),
                        c("Dynamic Tree Cut", "Merged dynamic"),
                        dendroLabels = FALSE, hang = 0.03,
                        addGuide = TRUE, guideHang = 0.05)
    dev.off()
    

    Rename to moduleColors

    moduleColors = mergedColors
    # Construct numerical labels corresponding to the colors
    colorOrder = c("grey", standardColors(50))
    moduleLabels = match(moduleColors, colorOrder)-1
    MEs = mergedMEs
    

    性状数据与基因模块进行分析

    nGenes = ncol(datExpr0)
    nSamples = nrow(datExpr0)
    moduleTraitCor = cor(MEs, datTraits, use = "p")
    moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples)
    

    绘制模块性状相关性图


    查看教程详细代码文本及代码链接:https://mp.weixin.qq.com/s/M0LAlE-61f2ZfpMiWN-iQg


    小杜的生信筆記 ,主要发表或收录生物信息学的教程,以及基于R的分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

    相关文章

      网友评论

        本文标题:WGCNA分析 | 全流程分析代码 | 代码一

        本文链接:https://www.haomeiwen.com/subject/earbkdtx.html