美文网首页
第十三讲 守恒定律 by赵常青

第十三讲 守恒定律 by赵常青

作者: 一语寄相思R | 来源:发表于2019-03-23 23:23 被阅读0次

    守恒定律

    知识点

    • 动量守恒、角动量守恒的直观感受
    • 动量守恒的方程
    • 角动量守恒的方程
      • 约定好正方向
      • 初态时,写出各个物件的角动量L_{i}(注意正负号)
      • 末态时,写出各个物件的角动量L_{j}(注意正负号)
      • 然后,列方程为:\sum_{i}L_{i}=\sum_{j}L_{j}
    tip

    • 相比对单词的辨析进行死记硬背,不如记几个例句。
    • 相比对物理概念进行全方位多角度的分析,不如记几个模型。
    表达题

    • 动量守恒和角动量守恒的充要条件分别是

    解答:动量守恒:

    a、系统不受外力或系统所受的外力的合力为零(理想)。

    b、系统所受外力的合力虽不为零,但比系统内力小得多(实际)。

    ​ 角动量守恒: 合外力矩为零。

    • 借助具体例子培养直观认识。动量守恒的充要条件是合外力为零。作为近似,实际生活中,内力比外力强很多时,也认为动量守恒。下面常见的物理模型中,

      (1) 爆炸瞬间; //内力远大于外力
      (2) 两个小球非弹性碰撞(部分动能转化为内能)瞬间; //系统动量守恒
      (3) 子弹打击用轻绳悬挂的小球瞬间;
      (4) 光滑地面上有车,车上有人,人在车内走动。 //系统合外力为零
      (5) 小球撞击墙壁反弹。 //受墙壁弹力
      (6) 子弹打击用轻杆悬挂的小球瞬间; //系统受杆对小球的力
      请思考,其中动量守恒的有( ),记住这些模型,会减少很多困扰。

    解答:(1)、(2)、(3)、(4)

    • 借助具体例子培养直观认识。角动量守恒的充要条件是合外力矩为零。下面常见的物理模型中,
      (1) 地球绕着太阳转; //\sum G_引 R_i\sin \theta_i=0
      (2) 光滑桌面上用轻绳拽着做圆周运动; //类似(1)
      (3) 光滑冰面上的芭蕾舞旋转; //合外力矩为0
      (4) 子弹打击用轻杆悬挂着的小球瞬间。
      (5) 小球打击旋转的滑轮的瞬间。
      (6) 绕同一转轴转动的两个飞轮,彼此啮合的瞬间; //系统不受外力矩
      请思考,其中角动量守恒的有( ),记住这些模型,会减少很多困扰。

    解答:(1)、 (2)、(3)、(4)、(5)、(6)

    • 请记下角动量的核心公式,在角动量守恒中会反复使用。圆周运动的质点和定轴转动的刚体,角动量分别为

    解答:圆周运动的质点:L=mRv_0

    ​ 定轴转动的刚体: L=J \omega​

    • 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为I_{0},角速度为\omega_{0}。然后她将两臂收回,使转动惯量减少为\frac{1}{2}I_{0}.设这时她转动的角速度变为\omega,则角动量守恒的方程为

    解答:L_0=L1

    I_0 \omega_0=\frac{1}{2}I_0 \omega​

    • 一圆盘(M,R)绕垂直于盘面的水平光滑固定轴O转动,转速为\omega_{0}. 如图射来一个质量为m,速度大小为v_{0}的子弹,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度\omega。约定逆时针转时角动量为正

      IMG_20190323_192635.jpg

      则初态时,将子弹速度沿切向(等效成圆周运动,从而得到角动量)和法向分解,其切向速度和角动量分别为:

    (1) v_{0}, mRv_{0}
    (2) v_{0}\sin\theta, mRv_{0}\sin\theta
    (3) v_{0}\sin\theta, -mRv_{0}\sin\theta
    初态的总角动量为
    (4) \frac{1}{2}MR^{2}\omega_{0}-mRv_{0}\sin\theta
    (5) \frac{1}{2}MR^{2}\omega_{0}+mRv_{0}\sin\theta
    末态的总角动量为
    (6) \frac{1}{2}MR^{2}\omega
    (7) \frac{1}{2}MR^{2}\omega+mR^{2}\omega
    核心方程是为
    (8) \frac{1}{2}MR^{2}\omega_{0}-mRv_{0}\sin\theta=\frac{1}{2}MR^{2}\omega+mR^{2}\omega
    (9) \frac{1}{2}MR^{2}\omega_{0}+mR^{2}\omega_{0}=\frac{1}{2}MR^{2}\omega+mR^{2}\omega
    以上正确的是( )

    解答:(2)、(5)、(7)、(9) 【上图】

    ​ 或(3)、(4)、(7)、(8) 【下图】

    • 一圆盘(M,R)绕垂直于盘面的水平光滑固定轴O转动,转速为\omega_{0}. 如图射来两个质量同为m,速度大小同为v_{0},方向相反,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度\omega。约定逆时针转时角动量为正。
    IMG_20190323_193556.jpg

    则初态时,总角动量为
    (1) \frac{1}{2}MR^{2}\omega_{0}-2mRv_{0}
    (2) \frac{1}{2}MR^{2}\omega_{0}
    末态的总角动量为
    (3) \frac{1}{2}MR^{2}\omega
    (4) \frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    核心方程是为
    (5) \frac{1}{2}MR^{2}\omega_{0}-2mRv_{0}=\frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    (6) \frac{1}{2}MR^{2}\omega_{0}=\frac{1}{2}MR^{2}\omega+2mR^{2}\omega​
    以上正确的是

    解答:(1)、(4)、(5)

    • 角动量守恒的计算题:有一质量为M、长为l的均匀细棒,平放在光滑的水平桌面上,以角速度\omega_{0}绕通过端点O顺时针转动。另有质量为m,初速为v_{0}的小滑块,与棒的底端A点相撞。碰撞后的瞬间,细棒反转,且角速度为\omega_{1};小滑块反向,速率为v_{1},如图所示。规定顺时针转动方向为正。
    IMG_20190323_194437.jpg

    则初态时,总角动量为
    (1) \frac{1}{3}Ml^{2}\cdot\omega_{0}+ml\cdot v_{0}
    (2) \frac{1}{3}Ml^{2}\cdot\omega_{0}-ml\cdot v_{0}
    末态的总角动量为
    (3) \frac{1}{3}Ml^{2}\cdot\omega_{1}-ml\cdot v_{1}
    (4) -\frac{1}{3}Ml^{2}\cdot\omega_{1}+ml\cdot v_{1}
    核心方程是为
    (5) \frac{1}{3}Ml^{2}\cdot\omega_{0}+ml\cdot v_{0}=\frac{1}{3}Ml^{2}\cdot\omega_{1}-ml\cdot v_{1}
    (6) \frac{1}{3}Ml^{2}\cdot\omega_{0}-ml\cdot v_{0}=-\frac{1}{3}Ml^{2}\cdot\omega_{1}+ml\cdot v_{1}
    以上正确的是

    解答:(2)、(4)、(6)

    相关文章

      网友评论

          本文标题:第十三讲 守恒定律 by赵常青

          本文链接:https://www.haomeiwen.com/subject/eazevqtx.html