美文网首页Hadoop大数据
二,Hive运行机制与使用

二,Hive运行机制与使用

作者: __元昊__ | 来源:发表于2019-02-04 14:04 被阅读116次

    hive介绍
    hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

    hive的运行机制
    图示

    image

    假设我在hive命令行客户端使用创建了一个数据库(database)myhive,接着又在该数据库中创建了一张表emp。

    create database myhive;
    use myhive;
    create table emp(id int,name string);
    
    

    那么hive会将元数据存储在数据库中。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
    hive是基于hadoop的,所以数据库和表均表现在hdfs上的目录,数据信息当然也是存储在hdfs上。
    对于上面的库和表来说,会在hdfs上创建/user/hive/warehouse/myhive.db这样的目录结构,而表的信息则可以自己上传个文件比如图中的emp.data到/user/hive/warehouse/myhive.db目录下。那么就可以写sql进行查询了(注:写查询语句写的是myhive这张表不删emp.data,如select * from myhive,但是查询到的是emp.data中的信息,两者结合可以理解为传统数据库的某张表),而这些元数据信息都会存储到外部的数据库中(如mysql,当然也可以使用内嵌的derby,不推荐使用derby毕竟是内嵌的不能共享信息)。
    然后我再写个查询语句

    select id,name from emp where id>2 order by id desc;
    
    

    那么是怎么执行的呢?查询语句交给hive,hive利用解析器、优化器等(图中表示Compiler),调用mapreduce模板,形成计划,生成的查询计划存储在 HDFS 中,随后由Mapreduce程序调用,提交给job放在Yarn上运行。

    hive与mapreduce关系

    image

    hive的数据存储
    1、Hive中所有的数据都存储在 HDFS 中,没有专门的数据存储格式(可支持Text,SequenceFile,ParquetFile,RCFILE等)
    2、只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。
    3、Hive 中包含以下数据模型:DB、Table,External Table,Partition,Bucket。
    db:在hdfs中表现为${hive.metastore.warehouse.dir}目录下一个文件夹
    table:在hdfs中表现所属db目录下一个文件夹
    external table:外部表, 与table类似,不过其数据存放位置可以在任意指定路径
    普通表: 删除表后, hdfs上的文件都删了
    External外部表删除后, hdfs上的文件没有删除, 只是把文件删除了
    partition:在hdfs中表现为table目录下的子目录
    bucket:桶, 在hdfs中表现为同一个表目录下根据hash散列之后的多个文件, 会根据不同的文件把数据放到不同的文件中

    理论总让人头昏,下面介绍hive的初步使用上面的自然就明白了。

    hive的使用
    虽然可以使用hive与shell交互的方式启动hive

    [root@mini1 ~]# cd apps/hive/bin
    [root@mini1 bin]# ll
    总用量 32
    -rwxr-xr-x. 1 root root 1031 4月  30 2015 beeline
    drwxr-xr-x. 3 root root 4096 10月 17 12:38 ext
    -rwxr-xr-x. 1 root root 7844 5月   8 2015 hive
    -rwxr-xr-x. 1 root root 1900 4月  30 2015 hive-config.sh
    -rwxr-xr-x. 1 root root  885 4月  30 2015 hiveserver2
    -rwxr-xr-x. 1 root root  832 4月  30 2015 metatool
    -rwxr-xr-x. 1 root root  884 4月  30 2015 schematool
    [root@mini1 bin]# ./hive
    hive> 
    
    

    但是界面并不好看,而hive也可以发布为服务(Hive thrift服务),然后可以使用hive自带的beeline去连接。如下

    窗口1,开启服务

    [root@mini1 ~]# cd apps/hive/bin
    [root@mini1 bin]# ll
    总用量 32
    -rwxr-xr-x. 1 root root 1031 4月  30 2015 beeline
    drwxr-xr-x. 3 root root 4096 10月 17 12:38 ext
    -rwxr-xr-x. 1 root root 7844 5月   8 2015 hive
    -rwxr-xr-x. 1 root root 1900 4月  30 2015 hive-config.sh
    -rwxr-xr-x. 1 root root  885 4月  30 2015 hiveserver2
    -rwxr-xr-x. 1 root root  832 4月  30 2015 metatool
    -rwxr-xr-x. 1 root root  884 4月  30 2015 schematool
    [root@mini1 bin]# ./hiveserver2
    
    

    窗口2,作为客户端连接

    [root@mini1 bin]# ./beeline 
    Beeline version 1.2.1 by Apache Hive
    beeline> [root@mini1 bin]# 
    [root@mini1 bin]# ./beeline 
    Beeline version 1.2.1 by Apache Hive
    beeline> !connect jdbc:hive2://localhost:10000
    Connecting to jdbc:hive2://localhost:10000
    Enter username for jdbc:hive2://localhost:10000: root
    Enter password for jdbc:hive2://localhost:10000: ******
    Connected to: Apache Hive (version 1.2.1)
    Driver: Hive JDBC (version 1.2.1)
    Transaction isolation: TRANSACTION_REPEATABLE_READ
    0: jdbc:hive2://localhost:10000> 
    
    

    可能出现错误

    Error: Failed to open new session: java.lang.RuntimeException: java.lang.RuntimeException: org.apache.hadoop.security.AccessControlException: Permission denied: user=root, access=EXECUTE, inode="/tmp":hadoop3:supergroup:drwx------
    
    
    ./hadoop dfs -chmod -R 777 /tmp
    
    

    下面进行简单使用,感觉下使用sql的舒适吧
    1、查看数据库

    0: jdbc:hive2://localhost:10000> show databases;
    +----------------+--+
    | database_name  |
    +----------------+--+
    | default        |
    +----------------+--+
    1 row selected (1.456 seconds)
    
    

    2、创建并使用数据库,查看表

    0: jdbc:hive2://localhost:10000> create database myhive;
    No rows affected (0.576 seconds)
    0: jdbc:hive2://localhost:10000> show databases;
    +----------------+--+
    | database_name  |
    +----------------+--+
    | default        |
    | myhive         |
    +----------------+--+
    0: jdbc:hive2://localhost:10000> use myhive;
    No rows affected (0.265 seconds)
    0: jdbc:hive2://localhost:10000> show tables;
    +-----------+--+
    | tab_name  |
    +-----------+--+
    +-----------+--+
    
    

    3、创建表

    0: jdbc:hive2://localhost:10000> create table emp(id int,name string);
    No rows affected (0.29 seconds)
    0: jdbc:hive2://localhost:10000> show tables;
    +-----------+--+
    | tab_name  |
    +-----------+--+
    | emp       |
    +-----------+--+
    1 row selected (0.261 seconds)
    
    

    上传数据到该目录下,从页面看的话是个目录,如下

    image

    里面没有文件当然没有数据,那么我们需要上传个文件到该目录下。

    [root@mini1 ~]# cat sz.data 
    1,zhangsan
    2,lisi
    3,wangwu
    4,furong
    5,fengjie
    [root@mini1 ~]# hadoop fs -put sz.data /user/hive/warehouse/myhive.db/emp
    
    

    再查看

    image

    4、查看表信息

    0: jdbc:hive2://localhost:10000> select * from emp;
    +---------+-----------+--+
    | emp.id  | emp.name  |
    +---------+-----------+--+
    | NULL    | NULL      |
    | NULL    | NULL      |
    | NULL    | NULL      |
    | NULL    | NULL      |
    | NULL    | NULL      |
    +---------+-----------+--+
    
    

    结果肯定都是null,因为创建表的时候根本没指定根据”,”来切分,而文件中的字段分隔用了逗号。那么删除该表,重新上传文件,重新建表语句如下

    0: jdbc:hive2://localhost:10000> drop table emp;
    No rows affected (1.122 seconds)
    0: jdbc:hive2://localhost:10000> show tables;
    +-----------+--+
    | tab_name  |
    +-----------+--+
    +-----------+--+
    0: jdbc:hive2://localhost:10000> create table emp(id int,name string)
    0: jdbc:hive2://localhost:10000> row format delimited
    0: jdbc:hive2://localhost:10000> fields terminated by ',';
    No rows affected (0.265 seconds)
    0: jdbc:hive2://localhost:10000> 
    
    [root@mini1 ~]# hadoop fs -put sz.data /user/hive/warehouse/myhive.db/emp
    0: jdbc:hive2://localhost:10000> select * from emp;
    +---------+-----------+--+
    | emp.id  | emp.name  |
    +---------+-----------+--+
    | 1       | zhangsan  |
    | 2       | lisi      |
    | 3       | wangwu    |
    | 4       | furong    |
    | 5       | fengjie   |
    +---------+-----------+--+
    
    

    6、条件查询

    0: jdbc:hive2://localhost:10000> select id,name from emp where id>2 order by id desc;
    INFO  : Number of reduce tasks determined at compile time: 1
    INFO  : In order to change the average load for a reducer (in bytes):
    INFO  :   set hive.exec.reducers.bytes.per.reducer=<number>
    INFO  : In order to limit the maximum number of reducers:
    INFO  :   set hive.exec.reducers.max=<number>
    INFO  : In order to set a constant number of reducers:
    INFO  :   set mapreduce.job.reduces=<number>
    INFO  : number of splits:1
    INFO  : Submitting tokens for job: job_1508216103995_0004
    INFO  : The url to track the job: http://mini1:8088/proxy/application_1508216103995_0004/
    INFO  : Starting Job = job_1508216103995_0004, Tracking URL = http://mini1:8088/proxy/application_1508216103995_0004/
    INFO  : Kill Command = /root/apps/hadoop-2.6.4/bin/hadoop job  -kill job_1508216103995_0004
    INFO  : Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
    INFO  : 2017-10-18 00:35:39,865 Stage-1 map = 0%,  reduce = 0%
    INFO  : 2017-10-18 00:35:46,275 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.33 sec
    INFO  : 2017-10-18 00:35:51,487 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 2.34 sec
    INFO  : MapReduce Total cumulative CPU time: 2 seconds 340 msec
    INFO  : Ended Job = job_1508216103995_0004
    +-----+----------+--+
    | id  |   name   |
    +-----+----------+--+
    | 5   | fengjie  |
    | 4   | furong   |
    | 3   | wangwu   |
    +-----+----------+--+
    3 rows selected (18.96 seconds)
    
    

    看到这就能明白了,写的sql最后是被解析为了mapreduce程序放到yarn上来跑的,hive其实是提供了众多的mapreduce模板。
    7、创建外部表

    0: jdbc:hive2://localhost:10000> create external table emp2(id int,name string)
    0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ','//指定逗号分割
    0: jdbc:hive2://localhost:10000> stored as textfile//文本存储方式
    0: jdbc:hive2://localhost:10000> location '/company';
    No rows affected (0.101 seconds)//存储在/company目录下
    0: jdbc:hive2://localhost:10000> dfs -ls /;
    +----------------------------------------------------------------------------------------+--+
    |                                       DFS Output                                       |
    +----------------------------------------------------------------------------------------+--+
    | Found 16 items                                                                         |
    | -rw-r--r--   2 angelababy mygirls             7 2017-10-01 20:22 /canglaoshi_wuma.avi  |
    | -rw-r--r--   2 root       supergroup         22 2017-10-03 21:12 /cangmumayi.avi       |
    | drwxr-xr-x   - root       supergroup          0 2017-10-18 00:55 /company              |
    | drwxr-xr-x   - root       supergroup          0 2017-10-13 04:44 /flowcount            |
    | drwxr-xr-x   - root       supergroup          0 2017-10-17 03:44 /friends              |
    | drwxr-xr-x   - root       supergroup          0 2017-10-17 06:19 /gc                   |
    | drwxr-xr-x   - root       supergroup          0 2017-10-07 07:28 /liushishi.log        |
    | -rw-r--r--   3 12706      supergroup         60 2017-10-04 21:58 /liushishi.love       |
    | drwxr-xr-x   - root       supergroup          0 2017-10-17 07:32 /logenhance           |
    | -rw-r--r--   2 root       supergroup         26 2017-10-16 20:49 /mapjoin              |
    | drwxr-xr-x   - root       supergroup          0 2017-10-16 21:16 /mapjoincache         |
    | drwxr-xr-x   - root       supergroup          0 2017-10-13 13:15 /mrjoin               |
    | drwxr-xr-x   - root       supergroup          0 2017-10-16 23:35 /reverse              |
    | drwx------   - root       supergroup          0 2017-10-17 13:10 /tmp                  |
    | drwxr-xr-x   - root       supergroup          0 2017-10-17 13:13 /user                 |
    | drwxr-xr-x   - root       supergroup          0 2017-10-14 01:33 /wordcount            |
    +----------------------------------------------------------------------------------------+--+
    0: jdbc:hive2://localhost:10000> create external table t_sz_ext(id int,name string)
    0: jdbc:hive2://localhost:10000> row format delimited fields terminated by '\t'
    0: jdbc:hive2://localhost:10000> stored as textfile
    0: jdbc:hive2://localhost:10000>  location '/company';
    No rows affected (0.135 seconds)
    0: jdbc:hive2://localhost:10000> show tables;
    +-----------+--+
    | tab_name  |
    +-----------+--+
    | emp       |
    | emp2      |
    | t_sz_ext  |
    +-----------+--+
    
    

    能发现多了目录/company和两张表,不过这个时候/company下是没任何东西的。

    8、加载文件信息到表中
    前面使用了hadoop命令将文件上传到了表对应的目录下,但是也可以在命令行下直接导入文件信息

    0: jdbc:hive2://localhost:10000> load data local inpath '/root/sz.data' into table emp2;(也可以用hadoo直接上传)
    INFO  : Loading data to table myhive.emp2 from file:/root/sz.data
    INFO  : Table myhive.emp2 stats: [numFiles=0, totalSize=0]
    No rows affected (0.414 seconds)
    0: jdbc:hive2://localhost:10000> select * from emp2;
    +----------+------------+--+
    | emp2.id  | emp2.name  |
    +----------+------------+--+
    | 1        | zhangsan   |
    | 2        | lisi       |
    | 3        | wangwu     |
    | 4        | furong     |
    | 5        | fengjie    |
    +----------+------------+--+
    
    

    9、表分区,分区字段为school,导入数据到2个不同的分区中

    0: jdbc:hive2://localhost:10000> create table stu(id int,name string)
    0: jdbc:hive2://localhost:10000> partitioned by(school string)
    0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ',';
    No rows affected (0.319 seconds)
    0: jdbc:hive2://localhost:10000> show tables;
    +-----------+--+
    | tab_name  |
    +-----------+--+
    | emp       |
    | emp2      |
    | stu       |
    | t_sz_ext  |
    +-----------+--+
    0: jdbc:hive2://localhost:10000> load data local inpath '/root/sz.data' into table stu partition(school='scu');
    INFO  : Loading data to table myhive.stu partition (school=scu) from file:/root/sz.data
    INFO  : Partition myhive.stu{school=scu} stats: [numFiles=1, numRows=0, totalSize=46, rawDataSize=0]
    No rows affected (0.607 seconds)
    0: jdbc:hive2://localhost:10000> select * from stu;
    +---------+-----------+-------------+--+
    | stu.id  | stu.name  | stu.school  |
    +---------+-----------+-------------+--+
    | 1       | zhangsan  | scu         |
    | 2       | lisi      | scu         |
    | 3       | wangwu    | scu         |
    | 4       | furong    | scu         |
    | 5       | fengjie   | scu         |
    +---------+-----------+-------------+--+
    5 rows selected (0.286 seconds)
    0: jdbc:hive2://localhost:10000> load data local inpath '/root/sz2.data' into table stu partition(school='hfut');
    INFO  : Loading data to table myhive.stu partition (school=hfut) from file:/root/sz2.data
    INFO  : Partition myhive.stu{school=hfut} stats: [numFiles=1, numRows=0, totalSize=46, rawDataSize=0]
    No rows affected (0.671 seconds)
    0: jdbc:hive2://localhost:10000> select * from stu;
    +---------+-----------+-------------+--+
    | stu.id  | stu.name  | stu.school  |
    +---------+-----------+-------------+--+
    | 1       | Tom       | hfut        |
    | 2       | Jack      | hfut        |
    | 3       | Lucy      | hfut        |
    | 4       | Kitty     | hfut        |
    | 5       | Lucene    | hfut        |
    | 6       | Sakura    | hfut        |
    | 1       | zhangsan  | scu         |
    | 2       | lisi      | scu         |
    | 3       | wangwu    | scu         |
    | 4       | furong    | scu         |
    | 5       | fengjie   | scu         |
    +---------+-----------+-------------+--+
    
    

    注:hive是不遵循三范式的,别去考虑主键了。
    10、添加分区

    0: jdbc:hive2://localhost:10000> alter table stu add partition (school='Tokyo');
    
    

    为了更直观,去页面查看

    image image image

    hive元数据表说明
    https://blog.csdn.net/haozhugogo/article/details/73274832

    谢谢

    相关文章

      网友评论

        本文标题:二,Hive运行机制与使用

        本文链接:https://www.haomeiwen.com/subject/eempsqtx.html