美文网首页TensorFlow HOWTO程序员
TensorFlow HOWTO 2.1 支持向量分类(软间隔)

TensorFlow HOWTO 2.1 支持向量分类(软间隔)

作者: 布客飞龙 | 来源:发表于2018-11-27 19:40 被阅读15次

在传统机器学习方法,支持向量机算是比较厉害的方法,但是计算过程非常复杂。软间隔支持向量机通过减弱了其约束,使计算变得简单。

操作步骤

导入所需的包。

import tensorflow as tf
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import sklearn.model_selection as ms

导入数据,并进行预处理。我们使用鸢尾花数据集所有样本,根据萼片长度和花瓣长度预测样本是不是山鸢尾(第一种)。注意,支持向量机只接受 1 和 -1 的标签。

iris = ds.load_iris()

x_ = iris.data[:, [0, 2]]
y_ = (iris.target == 0).astype(int)
y_[y_ == 0] = -1
y_ = np.expand_dims(y_ , 1)

x_train, x_test, y_train, y_test = \
    ms.train_test_split(x_, y_, train_size=0.7, test_size=0.3)

定义超参数。

变量 含义
n_input 样本特征数
n_epoch 迭代数
lr 学习率
lam L2 正则化项的系数
n_input = 2
n_epoch = 2000
lr = 0.05
lam = 0.05

搭建模型。

变量 含义
x 输入
y 真实标签
w 权重
b 偏置
z x的线性变换
x = tf.placeholder(tf.float64, [None, n_input])
y = tf.placeholder(tf.float64, [None, 1])
w = tf.Variable(np.random.rand(n_input, 1))
b = tf.Variable(np.random.rand(1, 1))
z = x @ w + b

定义损失、优化操作、和准确率度量指标。分类问题有很多指标,这里只展示一种。

我们使用 Hinge 损失和 L2 损失的组合。Hinge 损失为:

mean(\max(1 - Z \otimes Y, 0))

在原始的模型中,约束是样本必须落在支持边界之外,也就是 yz >= 1。我们将这个约束加到损失中,就得到了 Hinge 损失。它的意思是,对于满足约束的点,它的损失是零,对于不满足约束的点,它的损失是 1 - yz。这样让样本尽可能到支持边界之外。

L2 损失用于最小化支持边界的几何距离,也就是 \frac{2}{\|w\|}

变量 含义
hinge_loss Hinge 损失
l2_loss L2 损失
loss 总损失
op 优化操作
y_hat 标签的预测值
acc 准确率
hinge_loss = tf.reduce_mean(tf.maximum(1 - y * z, 0))
l2_loss = lam * tf.reduce_sum(w ** 2)
loss = hinge_loss + l2_loss
op = tf.train.AdamOptimizer(lr).minimize(loss)

y_hat = tf.to_double(z > 0) - tf.to_double(z <= 0)
acc = tf.reduce_mean(tf.to_double(tf.equal(y_hat, y)))

使用训练集训练模型。

losses = []
accs = []

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver(max_to_keep=1)
    
    for e in range(n_epoch):
        _, loss_ = sess.run([op, loss], feed_dict={x: x_train, y: y_train})
        losses.append(loss_)

使用测试集计算准确率。

        acc_ = sess.run(acc, feed_dict={x: x_test, y: y_test})
        accs.append(acc_)

每一百步打印损失和度量值。

        if e % 100 == 0:
            print(f'epoch: {e}, loss: {loss_}, acc: {acc_}')
            saver.save(sess,'logit/logit', global_step=e)

得到决策边界:

    x_plt = x_[:, 0]
    y_plt = x_[:, 1]
    c_plt = y_.ravel()
    x_min = x_plt.min() - 1
    x_max = x_plt.max() + 1
    y_min = y_plt.min() - 1
    y_max = y_plt.max() + 1
    x_rng = np.arange(x_min, x_max, 0.05)
    y_rng = np.arange(y_min, y_max, 0.05)
    x_rng, y_rng = np.meshgrid(x_rng, y_rng)
    model_input = np.asarray([x_rng.ravel(), y_rng.ravel()]).T
    model_output = sess.run(y_hat, feed_dict={x: model_input}).astype(int)
    c_rng = model_output.reshape(x_rng.shape)

输出:

epoch: 0, loss: 4.511212919815273, acc: 0.2222222222222222
epoch: 100, loss: 0.0814942611949705, acc: 1.0
epoch: 200, loss: 0.07629443566925993, acc: 1.0
epoch: 300, loss: 0.07146107394130172, acc: 1.0
epoch: 400, loss: 0.06791927215796319, acc: 1.0
epoch: 500, loss: 0.06529065400047798, acc: 1.0
epoch: 600, loss: 0.06335060635876646, acc: 1.0
epoch: 700, loss: 0.061836271593737835, acc: 1.0
epoch: 800, loss: 0.06079800773555345, acc: 1.0
epoch: 900, loss: 0.06042716484730995, acc: 1.0
epoch: 1000, loss: 0.06091475237291386, acc: 1.0
epoch: 1100, loss: 0.06021069445352348, acc: 1.0
epoch: 1200, loss: 0.06019457351257251, acc: 1.0
epoch: 1300, loss: 0.06000348375369489, acc: 1.0
epoch: 1400, loss: 0.060206981088196394, acc: 1.0
epoch: 1500, loss: 0.060210741691625935, acc: 1.0
epoch: 1600, loss: 0.060570783158962985, acc: 1.0
epoch: 1700, loss: 0.06003457018203537, acc: 1.0
epoch: 1800, loss: 0.060203912161627175, acc: 1.0
epoch: 1900, loss: 0.06019910894894441, acc: 1.0

绘制整个数据集以及决策边界。

plt.figure()
cmap = mpl.colors.ListedColormap(['r', 'b'])
plt.scatter(x_plt, y_plt, c=c_plt, cmap=cmap)
plt.contourf(x_rng, y_rng, c_rng, alpha=0.2, linewidth=5, cmap=cmap)
plt.title('Data and Model')
plt.xlabel('Petal Length (cm)')
plt.ylabel('Sepal Length (cm)')
plt.show()
image

绘制训练集上的损失。

plt.figure()
plt.plot(losses)
plt.title('Loss on Training Set')
plt.xlabel('#epoch')
plt.ylabel('Cross Entropy')
plt.show()
image

绘制测试集上的准确率。

plt.figure()
plt.plot(accs)
plt.title('Accurary on Testing Set')
plt.xlabel('#epoch')
plt.ylabel('Accurary')
plt.show()
image

扩展阅读

相关文章

  • TensorFlow HOWTO 2.1 支持向量分类(软间隔)

    在传统机器学习方法,支持向量机算是比较厉害的方法,但是计算过程非常复杂。软间隔支持向量机通过减弱了其约束,使计算变...

  • TensorFlow HOWTO 2.2 支持向量回归(软间隔)

    将上一节的假设改一改,模型就可以用于回归问题。 操作步骤 导入所需的包。 导入数据,并进行预处理。我们使用鸢尾花数...

  • 【机器学习基础】核逻辑回归

    将软间隔支持向量机看做正则化模型 上一小节中我们介绍了软间隔支持向量机,该模型允许有错分类数据的存在,从而使模型对...

  • 穷则变,变则通:支持向量机

    线性可分支持向量机通过硬间隔最大化求出划分超平面,解决线性分类问题; 线性支持向量机通过软间隔最大化求出划分超平面...

  • SVM

    二分类 学习策略:间隔最大化-->求解凸二次规划 分类 线性可分-->硬间隔支持向量机 近似线性可分-->软间隔支...

  • TensorFlow HOWTO 2.3 支持向量分类(高斯核)

    遇到非线性可分的数据集时,我们需要使用核方法,但为了使用核方法,我们需要返回到拉格朗日对偶的推导过程,不能简单地使...

  • 支持向量机

    支持向量机 线性可分支持向量机与硬间隔最大化 线性支持向量机与软间隔最大化 非线性支持向量机与核函数 序列最小最优...

  • 支持向量机

    支持向量机(svm)是一种用于分类的算法,它的思想是找出一条平面最大间隔的将数据集分开。它可以分为硬间隔分类和软间...

  • 机器学习-吴恩达笔记7

    Week7-SVM 本周主要是讲解了支持向量机SVM的相关知识点 硬间隔 支持向量 软间隔 对偶问题 优化目标Op...

  • 《人工智能基础》65/71天阅读

    支持向量机 支持向量机是在特征空间上分类间隔最大的分类器,它与感知器一样,是对两个类别进行分类。 把和分类直线相接...

网友评论

    本文标题:TensorFlow HOWTO 2.1 支持向量分类(软间隔)

    本文链接:https://www.haomeiwen.com/subject/ehunqqtx.html