美文网首页
2022-11-01汇总所有样本中共存甲基化位点

2022-11-01汇总所有样本中共存甲基化位点

作者: AsuraPrince | 来源:发表于2022-11-17 15:00 被阅读0次

所有样本中获取共有甲基化位点,进行候选相关性和PCA分析

脚本名称filter.py

#!~/anaconda3/envs/meme/bin/python3

import sys

#count = {}

data = {}

for f in sys.argv[1:]:

with open(f, 'r') as file:

for line in file:

tem = line.strip().split("\t")

# if tem[0] in count:

# count[tem[0]] += 1

# else:

# count[tem[0]] = 1

if tem[0] in data:

data[tem[0]].append(tem[1])

else:

data[tem[0]] = [tem[1]]

print("id\t" + "\t".join(sys.argv[1:]))

for k, v in data.items():

# if count[k] == 12:

if len(v) == 12:

print(k + "\t" + "\t".join(v))

用法 python filter.py S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 > 400bin.txt

#ForCM

利用corrplot R包进行相关性分析

setwd("C:/Users/Administrator/Documents/CM/")

testcorr111 = read.table(file ="sample.exp.txt",header = T)

sample.exp.txt格式示例

h<- testcorr111[,2:46]

pdf("ChenCor2.pdf")

cor(h)

library(corrplot)

res_cor <- cor(h)

heatmap(res_cor)

write.table(res_cor,file = "ChenCor.txt",sep = "\t", row.names = TRUE, col.names = TRUE)

corrplot.mixed(corr=res_cor, add=TRUE, lower = 'number', upper = 'pie')

dev.off()

##PCA分析

pca1 = testcorr111[,2:46]

pcadev=princomp(pca1,cor=T)

summary(pcadev,loadings = T)

comp = pcadev$loadings

write.table(comp, file = "Loadings.txt")

格式示例

library(ggplot2)

Loading1.txt格式示例

pp = read.table("Loading1.txt",header = T)

pdf("PCA1.pdf")

pcap = ggplot(pp,aes(x=Comp1,y=Comp2,col=Stages,shape=Groups))+

geom_point(size = 4)+

labs(x="PCA1(74.04%)",y="PCA2(12.28%)")+

geom_rug()+

theme_bw()

pcap

dev.off()

相关文章

网友评论

      本文标题:2022-11-01汇总所有样本中共存甲基化位点

      本文链接:https://www.haomeiwen.com/subject/ekldtdtx.html