- 同一行创建多个图
- 同一列创建多个图
- 行和列中创建多个图
- 选项卡式布局创建多个绘图
- 创建强大的网格布局
- 将多个图表链接在一起
同一行创建多个图
bokeh自带了很多数据,可以用如下方式下载:
In [2]: import bokeh
In [3]: bokeh.sampledata.download()
Creating /home/andrew/.bokeh directory
Creating /home/andrew/.bokeh/data directory
Using data directory: /home/andrew/.bokeh/data
Downloading: CGM.csv (1589982 bytes)
1589982 [100.00%]
Downloading: US_Counties.zip (3182088 bytes)
3182088 [100.00%]
Unpacking: US_Counties.csv
Downloading: us_cities.json (713565 bytes)
713565 [100.00%]
Downloading: unemployment09.csv (253301 bytes)
253301 [100.00%]
Downloading: AAPL.csv (166698 bytes)
166698 [100.00%]
Downloading: FB.csv (9706 bytes)
9706 [100.00%]
Downloading: GOOG.csv (113894 bytes)
113894 [100.00%]
Downloading: IBM.csv (165625 bytes)
165625 [100.00%]
Downloading: MSFT.csv (161614 bytes)
161614 [100.00%]
Downloading: WPP2012_SA_DB03_POPULATION_QUINQUENNIAL.zip (5148539 bytes)
5148539 [100.00%]
Unpacking: WPP2012_SA_DB03_POPULATION_QUINQUENNIAL.csv
Downloading: gapminder_fertility.csv (64346 bytes)
64346 [100.00%]
Downloading: gapminder_population.csv (94509 bytes)
94509 [100.00%]
Downloading: gapminder_life_expectancy.csv (73243 bytes)
73243 [100.00%]
Downloading: gapminder_regions.csv (7781 bytes)
7781 [100.00%]
Downloading: world_cities.zip (646858 bytes)
646858 [100.00%]
Unpacking: world_cities.csv
Downloading: airports.json (6373 bytes)
6373 [100.00%]
Downloading: movies.db.zip (5067833 bytes)
5067833 [100.00%]
Unpacking: movies.db
Downloading: airports.csv (203190 bytes)
203190 [100.00%]
Downloading: routes.csv (377280 bytes)
377280 [100.00%]
#Preparing all the plots needed for this chapter
import pandas as pd
from bokeh.sampledata.stocks import AAPL
df_apple = pd.DataFrame(AAPL)
df_apple['date'] = pd.to_datetime(df_apple['date'])
#Import the required packages
from bokeh.io import output_file, show
from bokeh.plotting import figure
from bokeh.plotting import ColumnDataSource
#Create the ColumnDataSource object
data = ColumnDataSource(data = {
'x' : df_apple['high'],
'y' : df_apple['low'],
'x1': df_apple['open'],
'y1': df_apple['close'],
'x2': df_apple['date'],
'y2': df_apple['volume'],
})
#Create the first scatter plot
plot1 = figure()
plot1.cross(x = 'x', y = 'y', source = data, color = 'red', size = 10, alpha = 0.8)
#Create the second scatter plot
plot2 = figure()
plot2.circle(x = 'x1', y = 'y1', source = data, color = 'green', size = 10, alpha = 0.3)
#Create the third scatter plot
plot3 = figure(x_axis_type = 'datetime', x_axis_label = 'date', y_axis_label = 'Volume Traded')
plot3.line(x = 'x2', y = 'y2', source = data, color = 'red')
plot3.circle(x = 'x2', y = 'y2', source = data, fill_color = 'white', size = 3)
#Output the 3 plots
#Output the plot1
output_file('first_plot.html')
show(plot1)
#Output the plot2
output_file('second_plot.html')
show(plot2)
#Output the plot3
output_file('third_plot.html')
show(plot3)
#Creating multiple plots along the same row
#Import the required packages
from bokeh.layouts import row
from bokeh.io import output_file, show
#Group the 3 plots into a 'row' layout
row_layout = row(plot1,plot2,plot3)
#Output the plot
output_file('horizontal.html')
show(row_layout)
#Creating multiple plots along the same column
#Import the required packages
from bokeh.layouts import column
from bokeh.io import output_file, show
#Group the 2 plots into a 'column' layout
col_layout = column(plot1,plot2)
#Output the plot
output_file('vertical.html')
show(col_layout)
#Creating multiple plots along a row and column
#Import the required packages
from bokeh.layouts import column, row
from bokeh.io import output_file, show
#Construct the nested layout
nested_layout = column(row(plot1,plot2), plot3)
#Output the plot
output_file('nested.html')
show(nested_layout)
#Creating multiple plots on a tabbed layout
#Import the required packages
from bokeh.models.widgets import Tabs, Panel
from bokeh.io import output_file, show
from bokeh.layouts import column, row
#Create the two panels
tab1 = Panel(child = plot1, title = 'Tab One')
tab2 = Panel(child = column(plot2,plot3), title = 'Tab Two')
#Feed the tabs into a Tabs object
tabs_object = Tabs(tabs = [tab1, tab2])
#Output the plot
output_file('tab_layout.html')
show(tabs_object)
#Creating a grid layout
#Import required packages
from bokeh.io import output_file, show
from bokeh.layouts import gridplot
#Create the grid layout
grid_layout = gridplot([plot1, plot2], [plot3, None])
#Output the plot
output_file('grid.html')
show(grid_layout)
#Linking multiple plots along the y axis
#Import the required packages
from bokeh.io import output_file, show
from bokeh.layouts import row
#Creating equal y axis ranges
plot3.y_range = plot1.y_range
#Create the row layout
row_layout = row(plot3, plot1)
#Output the plot
output_file('grid.html')
show(row_layout)
#Linking multiple plots along the x axis
#Import the required packages
from bokeh.io import output_file, show
from bokeh.layouts import row
#Creating equal x-axis ranges
plot2.x_range = plot1.x_range
#Create the row layout
row_layout = row(plot2, plot1)
#Output the plot
output_file('row.html')
show(row_layout)
可爱的python测试开发库 请在github上点赞,谢谢!
python中文库文档汇总
[雪峰磁针石博客]python3标准库-中文版
[雪峰磁针石博客]python3快速入门教程
接口自动化性能测试线上培训大纲
python测试开发自动化测试数据分析人工智能自学每周一练
更多内容请关注 雪峰磁针石:简书
-
技术支持qq群: 144081101(后期会录制视频存在该群群文件) 591302926 567351477 钉钉免费群:21745728
-
道家技术-手相手诊看相中医等钉钉群21734177 qq群:391441566 184175668 338228106 看手相、面相、舌相、抽签、体质识别。服务费50元每人次起。请联系钉钉或者微信pythontesting
网友评论