Liang, Yuxuan, Kun Ouyang, Lin Jing, Sijie Ruan, Ye Liu, Junbo Zhang, David S. Rosenblum, and Yu Zheng. "UrbanFM: Inferring Fine-Grained Urban Flows." arXiv preprint arXiv:1902.05377 (2019).
Code: https://github.com/yoshall/UrbanFM (pytorch)
这篇论文采用的是端到端的深度学习框架,以粗粒度的城市流量地图和天气、日期时间等其他影响因素作为输入,最后得到细粒度的城市流量地图。

任务 | 数据集 | 方法 | 评价指标 | 应用 |
---|---|---|---|---|
Fine-grained Urban Flow Inference(FUFI) | TaxiBJ;HappyValley | deep neural network-based method(UrbanFM) | Root Mean Square Error(RMSE);Mean Absolute Error(MAE); Mean Absolute Percentage Error(MAPE) | No |
总的来说,该文章的创新点在于:
1.将外部影响因素归类于分类和连续
2.以图像的方式来进行端到端的粗粒度流图转换到细粒度的流图
不足之处在于:
1.深度网络结构比较复杂
2.没有同以往的人群流量预测的文章进行直接对比
网友评论