美文网首页机器学习
ENAS的代码详解——utils.py

ENAS的代码详解——utils.py

作者: 时间轮回中的七月之雨 | 来源:发表于2020-04-20 21:10 被阅读0次

    本文介绍utils.py文件,这个文件用于设置命令行参数。
    首先是定义用于定义命令行参数的函数。
    tf 中定义了 tf.app.flags.FLAGS ,用于接受从终端传入的命令行参数,相当于对Python中的命令行参数模块optpars(参考: python中处理命令行参数的模块optpars )做了一层封装。
    optpars中的参数类型是通过参数 “type=xxx” 定义的,tf中每个合法类型都有对应的 “DEFINE_xxx”函数。常用:
    tf.app.flags.DEFINE_string() :定义一个用于接收 string 类型数值的变量;
    tf.app.flags.DEFINE_integer() : 定义一个用于接收 int 类型数值的变量;
    tf.app.flags.DEFINE_float() : 定义一个用于接收 float 类型数值的变量;
    tf.app.flags.DEFINE_boolean() : 定义一个用于接收 bool 类型数值的变量;

    def DEFINE_string(name, default_value, doc_string):
      tf.app.flags.DEFINE_string(name, default_value, doc_string)
      global user_flags
      user_flags.append(name)
    
    
    def DEFINE_integer(name, default_value, doc_string):
      tf.app.flags.DEFINE_integer(name, default_value, doc_string)
      global user_flags
      user_flags.append(name)
    
    
    def DEFINE_float(name, default_value, doc_string):
      tf.app.flags.DEFINE_float(name, default_value, doc_string)
      global user_flags
      user_flags.append(name)
    
    
    def DEFINE_boolean(name, default_value, doc_string):
      tf.app.flags.DEFINE_boolean(name, default_value, doc_string)
      global user_flags
      user_flags.append(name)
    

    输出定义的各个命令行参数。

    def print_user_flags(line_limit=80):
      print("-" * 80)
    
      global user_flags
      FLAGS = tf.app.flags.FLAGS
    
      for flag_name in sorted(user_flags):
        value = "{}".format(getattr(FLAGS, flag_name))
        log_string = flag_name
        log_string += "." * (line_limit - len(flag_name) - len(value))
        log_string += value
        print(log_string)
    

    设置文字颜色类和日志类。

    class TextColors:
      HEADER = '\033[95m'
      OKBLUE = '\033[94m'
      OKGREEN = '\033[92m'
      WARNING = '\033[93m'
      FAIL = '\033[91m'
      ENDC = '\033[0m'
      BOLD = '\033[1m'
      UNDERLINE = '\033[4m'
    
    
    class Logger(object):
      def __init__(self, output_file):
        self.terminal = sys.stdout
        self.log = open(output_file, "a")
    
      def write(self, message):
        self.terminal.write(message)
        self.terminal.flush()
        self.log.write(message)
        self.log.flush()
    

    返回模型参数总数量。

    def count_model_params(tf_variables):
      """
      Args:
        tf_variables: list of all model variables
      """
    
      num_vars = 0
      for var in tf_variables:
        num_vars += np.prod([dim.value for dim in var.get_shape()])
      return num_vars
    

    设置全局变量的函数。

    def get_train_ops(
        loss,
        tf_variables,
        train_step,
        clip_mode=None,
        grad_bound=None,
        l2_reg=1e-4,
        lr_warmup_val=None,
        lr_warmup_steps=100,
        lr_init=0.1,
        lr_dec_start=0,
        lr_dec_every=10000,
        lr_dec_rate=0.1,
        lr_dec_min=None,
        lr_cosine=False,
        lr_max=None,
        lr_min=None,
        lr_T_0=None,
        lr_T_mul=None,
        num_train_batches=None,
        optim_algo=None,
        sync_replicas=False,
        num_aggregate=None,
        num_replicas=None,
        get_grad_norms=False,
        moving_average=None):
      """
      Args:
        clip_mode: "global", "norm", or None.
        moving_average: store the moving average of parameters
      """
    
      if l2_reg > 0:
        l2_losses = []
        for var in tf_variables:
          l2_losses.append(tf.reduce_sum(var ** 2))
        l2_loss = tf.add_n(l2_losses)
        loss += l2_reg * l2_loss
    
      grads = tf.gradients(loss, tf_variables)
      grad_norm = tf.global_norm(grads)
    
      grad_norms = {}
      for v, g in zip(tf_variables, grads):
        if v is None or g is None:
          continue
        if isinstance(g, tf.IndexedSlices):
          grad_norms[v.name] = tf.sqrt(tf.reduce_sum(g.values ** 2))
        else:
          grad_norms[v.name] = tf.sqrt(tf.reduce_sum(g ** 2))
    
      if clip_mode is not None://梯度阶段
        assert grad_bound is not None, "Need grad_bound to clip gradients."
        if clip_mode == "global":
          grads, _ = tf.clip_by_global_norm(grads, grad_bound)
        elif clip_mode == "norm":
          clipped = []
          for g in grads:
            if isinstance(g, tf.IndexedSlices):
              c_g = tf.clip_by_norm(g.values, grad_bound)
              c_g = tf.IndexedSlices(g.indices, c_g)
            else:
              c_g = tf.clip_by_norm(g, grad_bound)
            clipped.append(g)
          grads = clipped
        else:
          raise NotImplementedError("Unknown clip_mode {}".format(clip_mode))
      
      if lr_cosine:
        assert lr_max is not None, "Need lr_max to use lr_cosine"
        assert lr_min is not None, "Need lr_min to use lr_cosine"
        assert lr_T_0 is not None, "Need lr_T_0 to use lr_cosine"
        assert lr_T_mul is not None, "Need lr_T_mul to use lr_cosine"
        assert num_train_batches is not None, ("Need num_train_batches to use"
                                               " lr_cosine")
    
        curr_epoch = train_step // num_train_batches
    
        last_reset = tf.Variable(0, dtype=tf.int32, trainable=False,
                                 name="last_reset")
        T_i = tf.Variable(lr_T_0, dtype=tf.int32, trainable=False, name="T_i")
        T_curr = curr_epoch - last_reset
    
        def _update():
          update_last_reset = tf.assign(last_reset, curr_epoch, use_locking=True)
          update_T_i = tf.assign(T_i, T_i * lr_T_mul, use_locking=True)
          with tf.control_dependencies([update_last_reset, update_T_i]):
            rate = tf.to_float(T_curr) / tf.to_float(T_i) * 3.1415926
            lr = lr_min + 0.5 * (lr_max - lr_min) * (1.0 + tf.cos(rate))
          return lr
    
        def _no_update():
          rate = tf.to_float(T_curr) / tf.to_float(T_i) * 3.1415926
          lr = lr_min + 0.5 * (lr_max - lr_min) * (1.0 + tf.cos(rate))
          return lr
    
        learning_rate = tf.cond(
          tf.greater_equal(T_curr, T_i), _update, _no_update)
      else:
        learning_rate = tf.train.exponential_decay(
          lr_init, tf.maximum(train_step - lr_dec_start, 0), lr_dec_every,
          lr_dec_rate, staircase=True)
        if lr_dec_min is not None:
          learning_rate = tf.maximum(learning_rate, lr_dec_min)
    
      if lr_warmup_val is not None:
        learning_rate = tf.cond(tf.less(train_step, lr_warmup_steps),
                                lambda: lr_warmup_val, lambda: learning_rate)
    
      # if get_grad_norms:
      #   g_1, g_2 = 0.0001, 0.0001
      #   for v, g in zip(tf_variables, grads):
      #     if g is not None:
      #       if isinstance(g, tf.IndexedSlices):
      #         g_n = tf.reduce_sum(g.values ** 2)
      #       else:
      #         g_n = tf.reduce_sum(g ** 2)
      #       if "enas_cell" in v.name:
      #         print("g_1: {}".format(v.name))
      #         g_1 += g_n
      #       else:
      #         print("g_2: {}".format(v.name))
      #         g_2 += g_n
      #   learning_rate = tf.Print(learning_rate, [g_1, g_2, tf.sqrt(g_1 / g_2)],
      #                            message="g_1, g_2, g_1/g_2: ", summarize=5)
    
      if optim_algo == "momentum":
        opt = tf.train.MomentumOptimizer(
          learning_rate, 0.9, use_locking=True, use_nesterov=True)
      elif optim_algo == "sgd":
        opt = tf.train.GradientDescentOptimizer(learning_rate, use_locking=True)
      elif optim_algo == "adam":
        opt = tf.train.AdamOptimizer(learning_rate, beta1=0.0, epsilon=1e-3,
                                     use_locking=True)
      else:
        raise ValueError("Unknown optim_algo {}".format(optim_algo))
    
      if sync_replicas:
        assert num_aggregate is not None, "Need num_aggregate to sync."
        assert num_replicas is not None, "Need num_replicas to sync."
    
        opt = tf.train.SyncReplicasOptimizer(
          opt,
          replicas_to_aggregate=num_aggregate,
          total_num_replicas=num_replicas,
          use_locking=True)
    
      if moving_average is not None:
        opt = tf.contrib.opt.MovingAverageOptimizer(
          opt, average_decay=moving_average)
    
      train_op = opt.apply_gradients(
        zip(grads, tf_variables), global_step=train_step)
    
      if get_grad_norms:
        return train_op, learning_rate, grad_norm, opt, grad_norms
      else:
        return train_op, learning_rate, grad_norm, opt
    
    

    相关文章

      网友评论

        本文标题:ENAS的代码详解——utils.py

        本文链接:https://www.haomeiwen.com/subject/epedihtx.html