基于密度的聚类方法

作者: 皮皮杂谈 | 来源:发表于2019-08-16 14:05 被阅读0次

基于密度的聚类方法的主要目标是寻找被低密度区域分离的高密度区域。

与基于距离的聚类算法不同的是,基于距离的聚类算法的聚类结果是球状的簇,而基于密度的聚类算法可以发现任意形状的簇。

基于密度的聚类方法是从数据对象分布区域的密度着手的。如果给定类中的数据对象在给定的范围区域中,则数据对象的密度超过某一阈值就继续聚类。

这种方法通过连接密度较大的区域,能够形成不同形状的簇,而且可以消除孤立点和噪声对聚类质量的影响,以及发现任意形状的簇。基于密度的聚类方法中最具代表性的是DBSAN算法、OPTICS算法和DENCLUE算法。

相关文章

  • 基于密度的聚类方法

    基于密度的聚类方法的主要目标是寻找被低密度区域分离的高密度区域。 与基于距离的聚类算法不同的是,基于距离的聚类算法...

  • 机器学习--K-means算法优化

    主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法。目前,聚类...

  • 【R语言 第2篇】K-means聚类分析流程

    聚类算法是没用因变量的。聚类算法有层次聚类、基于划分的聚类、两步聚类法、基于密度的聚类。 聚类方法的逻辑 客户细分...

  • 机器学习 - DBSCAN聚类算法

    1. DBSCAN简介 密度聚类 (亦称基于密度的聚类算法,density-based clustering)算法...

  • 机器学习学习笔记--DBSCAN算法

    DBSCAN算法是基于密度的聚类算法,与划分和层次聚类方法不同,簇被定义为密度相连的点的最大集合 能够巴足够高密度...

  • 基于Storm的海量数据实时聚类

    title:基于Storm的海量数据实时聚类 contribution 本文提出的聚类方案是基于DBSCAN密度聚...

  • 空间聚类算法简述

    空间数据聚类算法主要包括四大类:(1)给予划分的聚类;(2)基于层次的聚类;(3)基于密度的聚类;(4)基于网格的...

  • DBSCAN算法原理

    1. 密度聚类原理 DBSCAN是一种基于密度的聚类算法,这类密度聚类算法一般假定类别可以通过样本分布的紧密程度...

  • DBSCAN

    算法介绍 该聚类算法是具有噪声的基于密度可达关系的聚类方法,它将具有足够密度的区域划分为簇,并在具有噪声的空间数据...

  • 基于密度的聚类

    基于密度的聚类 前边的k-Means和k-Mediods算法比较适用于簇为球型的,对于非球型的,一般需要基于密度的...

网友评论

    本文标题:基于密度的聚类方法

    本文链接:https://www.haomeiwen.com/subject/epgfsctx.html