二叉树

作者: 百合_b06b | 来源:发表于2019-01-21 14:07 被阅读0次

    二叉树的顺序存储

    #include<stdio.h>

    #include<stdlib.h>

    typedef char ElemType;

    #define max 16

    typedef struct BinaryNode{

    ElemType data[max];            //创建存储数组

    int size;                      //数组的大小

    }binarytree;

    //初始化二叉树

    void init(binarytree *T)

    {

    for (int i = 0; i < max; i++){

    T->data[i] = NULL;         //将数组全部置为空并设置长度为0

    }

    T->size = 0;

    }

    //层次遍历创建二叉树

    void creattree(binarytree *T)

    {

    ElemType n;

    printf("当前为第%d个结点,请输入结点的值:", T->size);

    n = getchar();

    T->data[T->size] = n;

    T->size++;

    if (T->size == 20)

    return;

    if (n == '*')

    return;

    else{

    n = getchar();          //吸收回车符

    creattree(T);

    }

    }

    //层次遍历打印

    void Cprintftree(binarytree *T, int n)

    {

    for (; n<T->size; n++)

    {

    if (T->data[n] == NULL || T->data[n] == '*')

    return;

    else{

    if (T->data[n] != '#')

    printf("%c", T->data[n]);

    }

    }

    }

    //先序打印二叉树

    void Rprintftree(binarytree *T, int n)

    {

    if (T->data[n] == NULL || T->data[n] == '*' || T->data[n] == '#')

    return;

    printf("%c", T->data[n]);

    Rprintftree(T, 2 * n + 1);

    Rprintftree(T, 2 * (n + 1));

    }

    //中序打印二叉树

    void Zprintftree(binarytree *T, int n)

    {

    if (T->data[n] == NULL || T->data[n] == '*' || T->data[n] == '#')

    return;

    Zprintftree(T, 2 * n + 1);

    printf("%c", T->data[n]);

    Zprintftree(T, 2 * (n + 1));

    }

    //后序打印二叉树

    void Hprintftree(binarytree *T, int n)

    {

    if (T->data[n] == NULL || T->data[n] == '*' || T->data[n] == '#')

    return;

    Hprintftree(T, 2 * n + 1);

    Hprintftree(T, 2 * (n + 1));

    printf("%c", T->data[n]);

    }

    //求结点数

    int node(binarytree *T)

    {

    int num = 0;

    for (int n = 0; n<T->size; n++)

    {

    if ((T->data[n] != NULL) && (T->data[n] != '#') && (T->data[n] != '*'))

    {

    num++;

    }

    }

    return num;

    }

    //计算叶子结点数

    int leaf(binarytree *T)

    {

    int num = 0;

    for (int n = 0; n<T->size; n++)

    {

    if ((T->data[n] != NULL) && (T->data[n] != '#') && (T->data[n] != '*') && (T->data[2 * n + 1] == NULL) && (T->data[2 * (n + 1)] == NULL))

    {

    num++;

    }

    }

    return num + 1;

    }

    int main()

    {

    binarytree T;

    int n = 0;

    init(&T);

    printf("请从上到下从左往右输入结点的值,空结点用#代替当结束时用*,你最多可以输入%d个:\n", max);

    creattree(&T);

    printf("树得结点数为%d\n", node(&T));

    printf("树得叶子结点数为%d\n", leaf(&T));

    printf("树层次遍历结构的是:");

    Cprintftree(&T, n);

    printf("\n树先序遍历结构的是:");

    Rprintftree(&T, n);

    printf("\n树中序遍历结构的是:");

    Zprintftree(&T, n);

    printf("\n树后序遍历结构的是:");

    Hprintftree(&T, n);

    return 0;

    }


    二叉树的链式存储

    #include<stdio.h>

    #include<stdlib.h>

    typedef int ElemType;

    typedef struct BinaryTreeNode{

    ElemType Date;

    struct BinaryTreeNode *lChild, *rChild;

    }BinaryTreeNode,*BiTree;

    //先序遍历(PLR):依次访问根结点,左子树,右子树

    void PreOrderTransverse(BiTree t)

    {

    if (t == NULL)

    return;

    printf("%c", t->Date); //打印输出根结点

    PreOrderTransverse(t->lChild); //然后先序遍历左子树

    PreOrderTransverse(t->rChild); //最后先序遍历右子树

    }

    //中序遍历(LPR):依次访问左子树,根结点,右子树

    void InOrderTransverse(BiTree t)

    {

    if (t == NULL)

    return;

    InOrderTransverse(t->lChild); //中序遍历根结点的左子树

    printf("%c", t->Date); //打印输出根结点

    InOrderTransverse(t->rChild); //最后中序遍历右子树

    }

    //后序遍历(LRP):依次访问左子树,右子树,根结点

    void PostOrderTransverse(BiTree t)

    {

    if (t == NULL)

    return;

    PostOrderTransverse(t->lChild); //后序遍历根结点的左子树

    PostOrderTransverse(t->rChild); //然后后序遍历根结点的右子树

    printf("%c", t->Date); //打印输出根结点

    }

    //先序遍历方法构建二叉树

    BinaryTreeNode *PreCreateBt(BinaryTreeNode *t)

    {

    char ch;

    ch = getchar();

    if (ch == '#') //输入为#表示这里建立空二叉树,即遍历算法的空操作

    t = NULL;

    else

    {

    t = (BinaryTreeNode *)malloc(sizeof(BinaryTreeNode));

    t->Date = ch; //构造根结点

    t->lChild = PreCreateBt(t->lChild); //构造左子树

    t->rChild = PreCreateBt(t->rChild); //构造右子树

    }

    return t;

    }

    //计算叶子数(度为0的结点)

    int leaf(BiTree t)

    {

    int num1 = 0, num2 = 0;

    if (t == NULL)

    return 0;

    if (t->lChild == NULL && t->rChild == NULL)

    return 1;

    else

    {

    num1++;

    leaf(t->lChild);

    num2++;

    leaf(t->rChild);

    }

    return num1 + num2 + 1;

    }

    //结点数(树中的元素)

    int node(BiTree t)

    {

    int num1, num2;

    if (!t)

    return 0;

    if (t->lChild == NULL && t->rChild == NULL)

    return 1;

    else

    {

    num1 = node(t->lChild);

    num2 = node(t->rChild);

    }

    return num1 + num2 + 1;

    }

    //复制二叉树

    BiTree copy(BiTree t)

    {

    BiTree t1;

    if (!t)

    return NULL;

    else

    {

    t1 = (BinaryTreeNode *)malloc(sizeof(BinaryTreeNode));

    t1->Date = t->Date;

    t1->lChild = t->lChild = copy(t->lChild);

    t1->rChild = t->rChild = copy(t->rChild);

    return t1;

    }

    }

    //左右子树交换

    void chage(BiTree t)

    {

    BiTree p;

    if (!t)

    return;

    else

    {

    chage(t->lChild);

    chage(t->rChild);

    p = t->lChild;

    t->lChild = t->rChild;

    t->rChild = p;

    }

    }

    int main()

    {

    BiTree t = NULL,t2;

    printf("请输入树的数据:\n");

    t = PreCreateBt(t);

    printf("该树先序遍历:");

    PreOrderTransverse(t);

    printf("\n该树中序遍历:");

    InOrderTransverse(t);

    printf("\n该树后序遍历:");

    PostOrderTransverse(t);

    printf("\n");

    printf("叶子数:%d\n", leaf(t));

    printf("结点数:%d\n", node(t));

    t2 = copy(t);

    printf("复制树先序遍历:");

    PreOrderTransverse(t2);

    printf("\n左右子树交换后树的先序遍历");

    chage(t);

    PreOrderTransverse(t);

    printf("\n");

    }

    相关文章

      网友评论

          本文标题:二叉树

          本文链接:https://www.haomeiwen.com/subject/esdcjqtx.html