平衡二叉树是一种二叉排序树的优化,其中每一个结点的左子树和右子树的高度差至多等于1.
就是在构建二叉排序树的过程中,每当插入一个结点时,先检查是否因插入二破坏了树的平衡性.若是,则找到最小的不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各个结点间的链接关系.进行相应的旋转,使之成为新的平衡子树.
右旋 平衡因子>0 或者 平衡因子已号需要平衡
右旋1.P作为右旋的根结点
2.L的右子树,成为P的左子树
3.P成为L的右子树
4.L替换了P,成为二叉排序树新的根结点
/*
对以p为根的二叉排序树作右旋处理;
处理之后p指向新的树根结点,即旋转处理之前的左子树的根结点;
*/
void R_Rotate(BiTree *p){
BiTree L;
//① L是p的左子树;
L = (*p)->lchild;
//② L的右子树作为p的左子树
(*p)->lchild = L->rchild;
//③ 将p作为L的右子树
L->rchild = (*p);
//④ 将L替换原有p的根结点位置
*p = L;
}
左旋 平衡因子<0
左旋1.P作为左旋的根结点
2.R的左子树,成为了P的右子树
3.P成为了R的右子树
4.R替换了P,成为二叉排序树新的根结点
/*
对以P为根的二叉排序树作左旋处理
处理之后P指向新的树根结点,即旋转处理之前的右子树的根结点
*/
void L_Rotate(BiTree *p){
BiTree R;
//① R是p的右子树
R = (*p)->rchild;
//② R的左子树作为R的右子树
(*p)->rchild = R->lchild;
//③ 将p作为R的左子树;
R->lchild = (*p);
//④ 将R替换原有p的根结点的位置
*p = R;
}
左平衡树失衡处理
插入N前的平衡二叉树插入N后左子树失衡
对指针T所指结点为根的二叉树作左平衡旋转处理,算法结束,指针T指向平衡处理后新的根结点
#define LH +1 /* 左高 */
#define EH 0 /* 等高 */
#define RH -1 /* 右高 */
void LeftBalance(BiTree *T) {
BiTree L,Lr;
//1.L指向T的左子树根结点
L=(*T)->lchild;
//2.检查T的左子树的平衡度,并作相应平衡处理
switch(L->bf) {
//① 新结点插入在T的左孩子的左子树上,要作单右旋处理(如图1-平衡二叉树右旋解释图)
case LH:
//L的平衡因子为LH,即为1时,表示它与根结点BF符合相同,则将它们(T,L)的BF值都改为EH(0)
(*T)->bf=L->bf=EH;
//对最小不平衡子树T进行右旋;
R_Rotate(T);
break;
//② LH的平衡因子为RH(-1)时,它与跟结点的BF值符合相反.此时需要做双旋处理(2次旋转处理)
// 新结点插入在T的左孩子的右子树上,要作 双旋处理
case RH:
//Lr指向T的左孩子的右子树根
Lr=L->rchild;
//修改T及其左孩子的平衡因子
switch(Lr->bf) {
case LH:
(*T)->bf=RH;
L->bf=EH;
break;
case EH:
(*T)->bf=L->bf=EH;
break;
case RH:
(*T)->bf=EH;
L->bf=LH;
break;
}
Lr->bf=EH;
//对T的左子树作左旋平衡处理
L_Rotate(&(*T)->lchild);
//对T作右旋平衡处理
R_Rotate(T);
}
}
右平衡树失衡处理
/*
右平衡树失衡处理
对以指针T所指结点为根的二叉树作右平衡旋转处理
本算法结束时,指针T指向新的根结点
*/
void RightBalance(BiTree *T) {
BiTree R,Rl;
//1.R指向T的右子树根结点
R=(*T)->rchild;
//2. 检查T的右子树的平衡度,并作相应平衡处理
switch(R->bf) {
//① 新结点插入在T的右孩子的右子树上,要作单左旋处理
case RH:
(*T)->bf=R->bf=EH;
L_Rotate(T);
break;
//新结点插入在T的右孩子的左子树上,要作双旋处理
case LH:
//Rl指向T的右孩子的左子树根
Rl=R->lchild;
//修改T及其右孩子的平衡因子
switch(Rl->bf)
{
case RH:
(*T)->bf=LH;
R->bf=EH;
break;
case EH:
(*T)->bf=R->bf=EH;
break;
case LH:
(*T)->bf=EH;
R->bf=RH;
break;
}
Rl->bf=EH;
//对T的右子树作右旋平衡处理
R_Rotate(&(*T)->rchild);
//对T作左旋平衡处理
L_Rotate(T);
}
}
平衡二叉树的插入实现
若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否
思路:
1.如果T为空时,则创建一个新结点;
2.如果T不为空,判断是否存在相同的结点.如果二叉树中存在相同结点,则不需要插入;
3.如果新结点值e小于T的根结点值,则在T的左子树查找;
- 如果能在左子树中查找到,则不插入进去.返回False; 如果没有找到,则插入
- 插入成功taller为TRUE,说明新结点e已经插入进去; 此时需要判断T的平衡因子;
- 如果平衡因子是1,则说明左子树高于右子树,那么需要调用leftBalance进行左平衡旋转处理;
- 如果为0或者-1,则说明新插入的结点没有让整颗二叉排序树失去平衡性,只需要修改BF值即可;
4.如果新结点值e大于T的根结点值,则在T的右子树查找;
- 如果能在右子树中查找到,则不插入进去.返回False; 如果没有找到,则插入
- 插入成功taller为TRUE,说明新结点e已经插入进去; 此时需要判断T的平衡因子;
- 如果平衡因子是-1,则说明右子树高于左子树,那么需要调用RightBalance进行右平衡旋转处理;
- 如果为0或者1,则说明新插入的结点没有让整颗二叉排序树失去平衡性,只需要修改BF值即可
代码实现
Status InsertAVL(BiTree *T,int e,Status *taller) {
if(!*T) {
//1.插入新结点,树“长高”,置taller为TRUE
//① 开辟一个新结点T;
*T=(BiTree)malloc(sizeof(BiTNode));
//② 对新结点T的data赋值,并且让其左右孩子指向为空,T的BF值为EH;
(*T)->data=e;
(*T)->lchild=(*T)->rchild=NULL;
(*T)->bf=EH;
//③ 新结点默认"长高"
*taller=TRUE;
} else {
if (e==(*T)->data) {
//2.树中已存在和e有相同关键字的结点则不再插入
*taller=FALSE;
return FALSE;
}
if (e<(*T)->data) {
//3.应继续在T的左子树中进行搜索
if(!InsertAVL(&(*T)->lchild,e,taller))
//未插入
return FALSE;
//4.已插入到T的左子树中且左子树“长高”
if(*taller)
//5.检查T的平衡度
switch((*T)->bf) {
case LH:
//原本左子树比右子树高,需要作左平衡处理
LeftBalance(T);
*taller=FALSE;
break;
case EH:
//原本左、右子树等高,现因左子树增高而使树增高
(*T)->bf=LH;
*taller=TRUE;
break;
case RH:
//原本右子树比左子树高,现左、右子树等高
(*T)->bf=EH;
*taller=FALSE;
break;
}
} else { //6.应继续在T的右子树中进行搜索
//未插入
if(!InsertAVL(&(*T)->rchild,e,taller))
return FALSE;
//已插入到T的右子树且右子树“长高”
if(*taller)
// 检查T的平衡度
switch((*T)->bf) {
//原本左子树比右子树高,现左、右子树等高
case LH:
(*T)->bf=EH;
*taller=FALSE;
break;
//原本左、右子树等高,现因右子树增高而使树增高
case EH:
(*T)->bf=RH;
*taller=TRUE;
break;
// 原本右子树比左子树高,需要作右平衡处理
case RH:
RightBalance(T);
*taller=FALSE;
break;
}
}
}
return TRUE;
}
查找
Status SearchBST(BiTree T,int key,BiTree f, BiTree *p){
if (!T) /* 查找不成功 */
{
*p = f;
return FALSE;
}
else if (key==T->data) /* 查找成功 */
{
*p = T;
return TRUE;
}
else if (key<T->data)
return SearchBST(T->lchild, key, T, p); /* 在左子树中继续查找 */
else
return SearchBST(T->rchild, key, T, p); /* 在右子树中继续查找 */
}
网友评论