美文网首页程序员
Java源码阅读之LinkedList - JDK1.8

Java源码阅读之LinkedList - JDK1.8

作者: 格子Lin | 来源:发表于2018-09-03 21:08 被阅读0次

    阅读优秀的源码是提升编程技巧的重要手段之一。
    如有不对的地方,欢迎指正~
    转载请注明出处https://blog.lzoro.com

    前言

    前文基于缓冲数组的ArrayList已经分析过,那么同样作为List实现的LinkedList又有什么不一样呢?

    image

    在阅读LinkedList源码之前,开头处先简单总结一下两者的区别

    ArrayList

    • 基于缓冲数组进行数据存储
    • 查询/修改方便,因为基于下标容易定位数据
    • 插入/删除不方便,需要移动数据

    LinkedList

    • 基于双向链表进行数据存储
    • 查询/修改不方便,因为要移动指针
    • 插入/删除方便,因为基于指针,不需要移动数据

    带着这些概念,再次打开你的IDE,挽起袖子,开撸代码,加上注释,总计1262行代码,比ArrayList还少呢。

    基本介绍

    静态常量

    嗯,没有,你没看错,LinkedList内部没有含业务属性的静态常量。

    image

    成员变量

    工欲善其事,必先利其器。

    虽然没什么太大关系,但为了提供逼格还是来了个引用。

    要透彻理解整个LinkedList,那首先得先了解下它的内部提供了哪些成员变量,分别是做什么用的,这样有助于我们在看功能方法时提高效率。

    其实,LinkedList内部定义的成员变量也少,但是没办法,谁让我为了提升篇幅,多说两句了。

    image
    /**
     * 大小
     */
    transient int size = 0;
    
    /**
     * 首节点
     * 恒定的: (first == null && last == null) ||
     *            (first.prev == null && first.item != null)
     */
    transient Node<E> first;
    
    /**
     * 尾节点
     * 恒定的: (first == null && last == null) ||
     *            (last.next == null && last.item != null)
     */
    transient Node<E> last;
    
    

    可以看出来首节点/尾节点都是Node<E>的实例,那么Node<E>是何方神圣呢

    它是一个私有的静态内部类,内部定义了当前元素和前置/后继指针,和一个构造函数,是整个双向链表的基础。

    private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;
    
        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }
    

    构造函数

    /**
     * 构造一个空的List
     */
    public LinkedList() {
    }
    
    /**
     * 根据给定的集合构造一个List
     *
     * @param  c the collection whose elements are to be placed into this list
     * @throws NullPointerException if the specified collection is null
     */
    public LinkedList(Collection<? extends E> c) {
        //调用上面的构造函数
        this();
        //添加集合到List中
        addAll(c);
    }
    

    简洁明了。你应该也注意到了第二个构造函数中的addAll方法,看名字也知道是将集合c中的所有元素添加到LinkedList中。所以不能错过,往下看

    image

    可以看到,addAll(Collection<? extends E> c)是调用addAll(int index, Collection<? extends E> c)的,而这两个方法都是public的,第一个方法是在链表尾部添加指定的集合,而第二个方法比第一个方法多了一个参数,用来指定在某个位置添加指定集合。

    /**
     * 将指定集合的所有元素添加都list尾部
     * 
     * 如果操作过程中指定的集合被修改,则此操作的行为未定义。
     * (注意,如果指定的集合是该列表,并且它不是空的,则会发生这种情况。)
     * 其实就是线程不安全。
     *
     * @param c collection containing elements to be added to this list
     * @return {@code true} if this list changed as a result of the call
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }
    
    /**
     * 
     * 从指定位置插入指定集合的所有元素
     *
     * @param index index at which to insert the first element
     *              from the specified collection
     * @param c collection containing elements to be added to this list
     * @return {@code true} if this list changed as a result of the call
     * @throws IndexOutOfBoundsException {@inheritDoc}
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(int index, Collection<? extends E> c) {
        //检查指针是否合法
        checkPositionIndex(index);
        
        //集合转数组
        Object[] a = c.toArray();
        //集合长度
        int numNew = a.length;
        //如果是空集合,则返回false
        if (numNew == 0)
            return false;
        //定义前置/继任节点
        Node<E> pred, succ;
        //如果指定的位置是尾部(index==size)
        //无论当前链表是不是空的,只要index==size,就是往尾部插入元素
        if (index == size) {
            //继任节点为null
            succ = null;
            //前置节点就是最后一个节点
            pred = last;
        } else {
            //根据下标找出节点作为继任节点
            succ = node(index);
            //设置前置节点
            pred = succ.prev;
            //相当于在指定位置把当前链表断开
        }
        //遍历集合元素进行插入(修改指针)
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }
        //如果没有继任节点
        if (succ == null) {
            last = pred;
        } else {
            pred.next = succ;
            succ.prev = pred;
        }
        //修改大小
        size += numNew;
        //修改操作计数
        modCount++;
        return true;
    }
    

    这里的addAll添加一个集合的元素操作,整体逻辑还是比较清晰的,包含了指定集合c的非空判断,插入位置判断,断开链表,修改引用,后续判断和修改计数。

    功能方法

    了解了一些基础之后,那就该上大菜了。

    接下来阅读,平时我们用的比较频繁的一些功能方法的源码。

    还是老生常谈,对于这种集合框架来说,常用方法无外乎增/删/改/查。

    另外,由于LinkedList不仅实现了List接口,还实现了Deque双端队列接口,所以也提供了队列相关方法。

    add

    ArrayList一样,LinkedList的添加也分为几类

    • 尾部添加单个元素
    • 指定位置添加单个元素
    • 尾部添加集合元素
    • 指定位置添加集合元素
    • 首位添加

    由于集合元素的添加,在上面构造函数章节已经提过,这里就不再赘述。

    着重看一下单个元素的添加。

    /**
     * 尾部添加元素,返回true
     *
     * <p>This method is equivalent to {@link #addLast}.
     *
     * @param e element to be appended to this list
     * @return {@code true} (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
        //调用linkLast,后续分析
        linkLast(e);
        return true;
    }
    
    /**
     * 指定位置添加元素
     *
     * @param index index at which the specified element is to be inserted
     * @param element element to be inserted
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public void add(int index, E element) {
        //检查指针
        checkPositionIndex(index);
        //判断是不是从尾部添加
        if (index == size)
            linkLast(element);
        else
            //不是尾部添加的,调用linkBefore,后续分析
            linkBefore(element, node(index));
    }
    
    /**
     * 头部插入
     *
     * @param e the element to add
     */
    public void addFirst(E e) {
        linkFirst(e);
    }
    
    /**
     * 尾部插入
     *
     * @param e the element to add
     */
    public void addLast(E e) {
        linkLast(e);
    }
    
    

    方法都很简单,没有什么操作逻辑,可以看出来,是linkLast/linkFirst/linkBefore在提供实际实现。

    /**
     * 作为首节点
     */
    private void linkFirst(E e) {
        //取出当前首节点
        final Node<E> f = first;
        //创建新节点
        final Node<E> newNode = new Node<>(null, e, f);
        //用新节点替换首节点
        first = newNode;
        //如果原来的首节点不存在的话
        if (f == null)
            //当前只有一个节点,则首位节点都是同一个
            last = newNode;
        else
            //原来的首节点后移
            f.prev = newNode;
        //修改计数
        size++;
        modCount++;
    }
    
    
    /**
     * 作为尾节点
     */
    void linkLast(E e) {
        //取出当前尾节点
        final Node<E> l = last;
        //根据给定元素创建新节点
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        //判断原来的尾节点是否存在
        if (l == null)
            //与上面同理
            first = newNode;
        else
            //原来的尾节点前移
            l.next = newNode;
        //修改计数
        size++;
        modCount++;
    }
    
    /**
     * 在非null继任节点前插入
     */
    void linkBefore(E e, Node<E> succ) {
        // assert succ != null;
        final Node<E> pred = succ.prev;
        final Node<E> newNode = new Node<>(pred, e, succ);
        //其实就是从指定节点断开连接,修改指针引用
        succ.prev = newNode;
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }
    
    

    看完上面内容,大概也就能了解为什么LinkedList适合插入/删除节点了,因为插入操作对于LinkedList来说,不需要移动数据,只需要在指定位置修改指针引用即可,即,断开->插入->修改引用。

    移除其实也是同样的道理,即,断开->移除->修改引用。

    remove

    移除分为以下几种

    • 根据下标移除
    • 根据对象移除
    • 移除头部(实现Deque接口的方法)
    • 移除尾部((实现Deque接口的方法)
    • 移除首个匹配的对象(实现Deque接口的方法)
    • 移除最后一个匹配的对象(实现Deque接口的方法)
    /**
     * 根据下标移除元素,并移动相关指针
     *
     * @param index 要移除元素的下标
     * @return 返回删除元素的前一个元素
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E remove(int index) {
        //下标合法性判断
        checkElementIndex(index);
        //调用node进行节点查找之后调用unlink进行移除
        //后续分析这两个方法
        return unlink(node(index));
    }
    
    /**
     * 如果存在的话从list中移除第一个匹配的元素
     * 如果不存在,则list不改变
     * 
     * 更正式点说,是移除在低位匹配到的元素
     * 如下所示
     * <tt>(o==null?get(i)==null:o.equals(get(i)))</tt>
     * (假如元素存在).  
     * Returns {@code true} 如果列表存在元素 (等价理解,该链表被改变).
     *
     * @param o 要移除的元素
     * @return {@code true} 如果存在要移除的元素
     */
    public boolean remove(Object o) {
        //先判断要移除的元素是不是null
        if (o == null) {
            //从首节点遍历查找
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    //匹配到null,在调用unlink移除(之后分析这个方法)
                    unlink(x);
                    return true;
                }
            }
        //要移除的元素不是 null
        } else {
            //仍然是遍历,不过比较方法换成equals
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }
    
    
    /**
     * 移除并返回首个元素
     *
     * @return 返回list首元素
     * @throws NoSuchElementException list为空时,抛异常
     */
    public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        //调用unlinkFirst,后面和unlink一起分析
        return unlinkFirst(f);
    }
    
    
    /**
     * 移除并返回尾部元素
     *
     * @return 返回list尾元素
     * @throws NoSuchElementException list为空时,抛异常
     */
    public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        ////调用unlinkLast,后面和unlink一起分析
        return unlinkLast(l);
    }
    
    /**
     * 从list头部->尾部进行遍历,如果存在指定元素的话,则移除第一个匹配的元素,如果不存在,则list不改变
     *
     * @param o 要移除的元素
     * @return {@code true} 如果存在的话,返回true
     * @since 1.6
     */
    public boolean removeFirstOccurrence(Object o) {
        //直接调用remove(o),因为remove(o)就是从头部遍历并移除第一个匹配的元素
        return remove(o);
    }
    
    /**
     * 从list尾部->头部进行遍历,如果存在指定元素的话,则移除第一个匹配的元素,如果不存在,则list不改变
     *
     * @param o 要移除的元素
     * @return {@code true} 如果存在的话,返回true
     * @since 1.6
     */
    public boolean removeLastOccurrence(Object o) {
        //判断o是不是null,如果是null,则用==比较
        if (o == null) {
            //从尾部遍历
            for (Node<E> x = last; x != null; x = x.prev) {
                if (x.item == null) {
                    //移除
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }
    
    //上面这个方法,通过条件分支,循环在两个分支里都有,看似可以抽离循环,然后再循环内部判断o==null来精简代码。
    
    //但是实际上,把o==null抽离出来循环之外,虽然多写了些代码,但是不用在每次循环中做两次判断,可以提供效率。
    
    //如果有类似的场景,我们也可以参考这种写法。
    

    好了,看完上面的remove类方法,遗留了几个实际实现nodeunlinkunlinkFirstunlinkLast未阅读,下面继续

    /**
     * 返回非指定位置的非null节点
     */
    Node<E> node(int index) {
        // assert isElementIndex(index);
        //判断下标在list的上游/下游
        //如果是上游的话,从头部进行查找
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        
        //如果是下游,则从尾部查找    
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }
    
    
    /**
     * 移除非null节点x
     */
    E unlink(Node<E> x) {
        // assert x != null;
        //取出元素待返回
        final E element = x.item;
        //取出x的前/后节点
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;
        //如果前置节点不存在,则证明x是首节点
        if (prev == null) {
            //首节点指向x的后置节点
            first = next;
        } else {
            //如果x不是首节点
            //则将x的前置节点与后置节点相连
            prev.next = next;
            //x与前置节点断开
            x.prev = null;
        }
        
        //如果x的后置节点不存在,则证明x是尾节点
        if (next == null) {
            //尾节点指向x的前置节点
            last = prev;
        } else {
            //如果不是尾节点
            //则将x的尾首节点相连
            //修改引用
            next.prev = prev;
            //x与后置节点断开
            x.next = null;
        }
        //x的元素置null
        x.item = null;
        //size - 1
        size--;
        //操作计数 + 1
        modCount++;
        return element;
    }
    
    
    /**
     * 移除非null的f首节点.
     */
    private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        //老规矩,取出f节点元素,待返回
        final E element = f.item;
        //取出f的后置节点
        final Node<E> next = f.next;
        //下面两个置null帮助垃圾收集器进行GC
        f.item = null;
        f.next = null; // help GC
        //首节点指向f的后置节点
        first = next;
        //如果后置节点不存在,证明list只有一个节点
        if (next == null)
            //置null
            last = null;
        else
            //list不只一个节点
            //后置节点变成首节点了,所以首节点的prev置null
            next.prev = null;
        //常规操作
        size--;
        modCount++;
        return element;
    }
    
    
    /**
     * 移除非null的l尾节点
     */
    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        //取出元素待返回
        final E element = l.item;
        //取出l的前置节点
        final Node<E> prev = l.prev;
        //两个置null帮助垃圾收集器GC
        l.item = null;
        l.prev = null; // help GC
        //尾节点指向l的前置节点
        last = prev;
        //如果前置节点尾null,证明list只有一个节点
        if (prev == null)
            //首节点置null,此时list为空
            first = null;
        else
            //list不只一个节点
            //前置节点变成尾节点了,所以尾节点的后置为null
            prev.next = null;
        //常规操作
        size--;
        modCount++;
        return element;
    }
    

    set

    设置/修改元素操作,需要提供下标和对应的元素,逻辑比较简单。

    /**
     * 提供下标和元素来替换指定位置的元素
     *
     * @param index index of the element to replace
     * @param element element to be stored at the specified position
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E set(int index, E element) {
        //下标合法性判断
        checkElementIndex(index);
        //获取指定节点(在remove章节已经分析过该方法)
        Node<E> x = node(index);
        //进行替换
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }
    

    get

    LinkedList的查找元素方式跟ArrayList有点不同,由于它是双端链表形式存储数据,所以额外提供了getFirstgetLast,方法实现都很简单,下面看一下这三个方法的实现

    /**
     * 返回指定位置的元素
     *
     * @param index index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E get(int index) {
        //这里其实也是调用node(index)方法进行定位
        checkElementIndex(index);
        return node(index).item;
    }
    
    /**
     * 返回list的首元素
     *
     * @return the first element in this list
     * @throws NoSuchElementException if this list is empty
     */
    public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }
    
    /**
     * 返回list的尾元素
     *
     * @return the last element in this list
     * @throws NoSuchElementException if this list is empty
     */
    public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }
    
    

    contains

    判断list是否包含指定元素,跟ArrayList一样,通过查找元素的下标后判断下标是否存在,来判断元素是否存在,不一样的是元素的查找方法。

    LinkedList是双端链表实现,所以查找方法时从首节点进行遍历。

    public boolean contains(Object o) {
        return indexOf(o) != -1;
    }
    
    public int indexOf(Object o) {
        int index = 0;
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;
    }
    
    

    其他方法

    其他还有一些方法,如clear以及Deque接口中定义的方法实现如offer等,避免篇幅过长,这里不一一分析,有兴趣的可自行阅读源码,实现逻辑都相对比较简单。

    • clear
    • offer
    • peek
    • ...

    只要了解了双端链表的基本原理,和常规操作,基本上内部的方法实现都能掌握得差不多,所以。

    我犯懒了,就差不多分析到这里。

    image

    最后

    惯例求点赞~~

    3Q~

    相关文章

      网友评论

        本文标题:Java源码阅读之LinkedList - JDK1.8

        本文链接:https://www.haomeiwen.com/subject/ezrbwftx.html