RL

作者: TonnyYan | 来源:发表于2018-09-18 20:05 被阅读5次

策略(搜索/优化)都是在学习控制律control law,即系统状态到控制输入的映射(本质上也是个回归问题)。强化学习的优势在于当系统的随机动态未知的情况下,理论上可以学习到任意的非线性最优控制规律u = f(x)而不单单只是线性控制率u = Kx,而对于控制理论来说这种非线性复杂控制系统的分析与设计是十分复杂棘手的。

强化学习提供了一种方法论,可以通过采样的方式获取经验(policyenvironment的自主交互),policy learning from scratch,然后按一个指标(该指标一般都是high-level的)评价这个策略的好坏policy evaluation,再根据这个评价结果指导策略的改进policy improvement。迭代上述过程 policy(即control law会逼近最优控制率)会越来越好。

相关文章

  • mac 本机mysql无法启动

    sudo chown -RL root:mysql /usr/local/mysqlsudo chown -RL ...

  • 强化学习

    RL 种类 Model-Free RL不理解环境,通过试错来学习 Model-Based RL理解环境,通过想象学...

  • RL

    Q-learning Sarsa Sara-lambda

  • RL

    策略(搜索/优化)都是在学习控制律control law,即系统状态到控制输入的映射(本质上也是个回归问题)。强化...

  • RL

    RL 强化学习任务通常用马尔科夫决策过程(Markov Decision Process,简称 MDP)来描述: ...

  • rl

    recyclerview

  • 10.31 背

    单臂哑铃划船 20lbs 12*2组 RL 22.5lbs 10*4组 RL ...

  • Arrow Of RL

    This is my favorite APP, my own independent development, ...

  • 再见RL

    我们本该是路人,本该是属于各自价值体系。原本的感情,在看见你秀恩爱时,化成一把提在我手里的刀。但我知道,走到你婚礼...

  • Inverse RL

网友评论

      本文标题:RL

      本文链接:https://www.haomeiwen.com/subject/fbwmnftx.html