美文网首页
Python网络爬虫精要

Python网络爬虫精要

作者: 幼稚鬼学编程 | 来源:发表于2018-10-08 06:49 被阅读0次

    目的
    学习如何从互联网上获取数据。数据科学必须掌握的技能之一。
    本文所用到的第三方库如下: requests, parsel, selenium
    requests负责向网页发送HTTP请求并得到响应,parsel负责解析响应字符串,selenium负责JavaScript的渲染。
    网络爬虫是什么
    网络爬虫是一种按照一定的规则,自动地抓取网站信息的程序或者脚本。
    如何爬取网站信息
    写爬虫之前,我们必须确保能够爬取目标网站的信息。
    不过在此之前必须弄清以下三个问题:
    网站是否已经提供了api
    网站是静态的还是动态的
    网站是否有反爬的对策
    情形1:开放api的网站
    一个网站倘若开放了api,那你就可以直接GET到它的json数据。
    比如xkcd的about页就提供了api供你下载
    import requests
    requests.get('https://xkcd.com/614/info.0.json').json()
    那么如何判断一个网站是否开放api呢?有3种方法:
    在站内寻找api入口
    用搜索引擎搜索“某网站 api”
    抓包。有的网站虽然用到了ajax(比如果壳网的瀑布流文章),但是通过抓包还是能够获取XHR里的json数据的。
    怎么抓包:F12 - Network - F5刷新即可 | 或者用fiddle等工具也可以

    50k的工作.jpg

    情形2:不开放api的网站
    如果此网站是静态页面,那么你就可以用requests库发送请求,再用HTML解析库(lxml、parsel等)来解析响应的text
    解析库强烈推荐parsel,不仅语法和css选择器类似,而且速度也挺快,Scrapy用的就是它。
    你需要了解一下css选择器的语法(xpath也行),并且学会看网页的审查元素。
    比如获取konachan的所有原图链接
    from parsel import Selector
    res = requests.get('https://konachan.com/post')
    tree = Selector(text=res.text)
    imgs = tree.css('a.directlink::attr(href)').extract()
    如果此网站是动态页面,先用selenium来渲染JS,再用HTML解析库来解析driver的page_source。
    比如获取hitomi.la的数据(这里把chrome设置成了无头模式)
    from selenium import webdriver
    options = webdriver.ChromeOptions()
    options.add_argument('--headless')
    driver = webdriver.Chrome(options=options)
    driver.get('https://hitomi.la/type/gamecg-all-1.html')
    tree = Selector(text=driver.page_source)
    gallery_content = tree.css('.gallery-content > div')
    情形3:反爬的网站
    目前的反爬策略常见的有:验证码、登录、封ip等。
    验证码:利用打码平台破解(如果硬上的话用opencv或keras训练图)
    登录:利用requests的post或者selenium模拟用户进行模拟登陆
    封ip:买些代理ip(免费ip一般都不管用),requests中传入proxies参数即可
    其他防反爬方法:伪装User-Agent,禁用cookies等
    推荐用fake-useragent来伪装User-Agent
    from fake_useragent import UserAgent
    headers = {'User-Agent': UserAgent().random}
    res = requests.get(url, headers=headers)
    如何编写结构化的爬虫
    如果能成功地爬取网站信息,那么你已经成功了一大半。
    其实爬虫的架构很简单,无非就是创造一个tasklist,对tasklist里的每一个task调用crawl函数。
    大多数网页的url构造都是有规律的,你只需根据它用列表推倒式来构造出tasklist对于那些url不变的动态网页,先考虑抓包,不行再用selenium点击下一页
    如果追求速度的话,可以考虑用concurrent.futures或者asyncio等库。
    import requests
    from parsel import Selector
    from concurrent import futures

    domain = 'https://www.doutula.com'

    def crawl(url):
    res = requests.get(url)
    tree = Selector(text=res.text)
    imgs = tree.css('img.lazy::attr(data-original)').extract()
    # save the imgs ...

    if name == 'main':
    tasklist = [f'{domain}/article/list/?page={i}' for i in range(1, 551)]
    with futures.ThreadPoolExecutor(50) as executor:
    executor.map(crawl, tasklist)
    数据存储的话,看你的需求,一般都是存到数据库中,只要熟悉对应的驱动即可。
    常用的数据库驱动有:pymysql(MySQL),pymongo(MongoDB)

    相关文章

      网友评论

          本文标题:Python网络爬虫精要

          本文链接:https://www.haomeiwen.com/subject/fdcdaftx.html