在之前的文章中,我们发现训练组(篮)和验证组(红)的损失函数在20个Epoch之后,向着相反方向变化,训练组损失函数继续下降,验证组损失函数反而在上升,这就是典型的Overfitting(过拟合)现象。
过拟合就是模型过度地学习了训练集的特征,反而没法处理测试集中更一般化的问题。处理过拟合最根本的解决方法当然是获得更多的训练样本。
但是在无法获得更多的训练样本的时候,也有两个最简单的方法,一是对权重进行正则化处理,二就对神经元随机dropout.
关于更多Keras的入门介绍,感兴趣的朋友可以参考Google的官方教程,更多关于过拟合和欠拟合的相关资料请参考这里
在Keras中我们只需要对模型进行简单改造就能实现正则化和dropout,同样的,为了方便与读者交流,所有的代码都放在了这里:
https://github.com/zht007/tensorflow-practice/
L1,L2正则化
模型Overfiting其中一个原因就是某些权重在训练的过程中会被放大,L1正则化相当于给权重加了惩罚因子,从而限制了某些权重过度膨胀。L2相当于对L1惩罚因子乘了个平方,对权重的膨胀加大了惩罚力度。
在模型中引入L1,或者L2也非常简单,只需要在建立模型的时候加入:
kernel_regularizer = keras.regularizers.l1
或
kernel_regularizer = keras.regularizers.l2
模型如下所示
model.add(Dense(20,input_shape = (X_train.shape[1],),
activation = 'relu',
kernel_regularizer = keras.regularizers.l2(0.001)))
model.add(Dense(20,input_shape = (X_train.shape[1],),
activation = 'relu',
kernel_regularizer = keras.regularizers.l2(0.001)))
model.add(Dense(10,activation = 'relu',
kernel_regularizer = keras.regularizers.l2(0.001)))
model.add(Dense(2, activation = 'softmax'))
Dropout
在需要Dropout的Dense层之后加上:
model.add(Dense(2, activation = 'softmax'))
最后我们看看加上L2正则化和Dropout之后的模型是怎么样的。
model = Sequential()
model.add(Dense(20,input_shape = (X_train.shape[1],),
activation = 'relu',
kernel_regularizer = keras.regularizers.l2(0.001)))
model.add(keras.layers.Dropout(0.5))
model.add(Dense(20,input_shape = (X_train.shape[1],),
activation = 'relu',
kernel_regularizer = keras.regularizers.l2(0.001)))
model.add(keras.layers.Dropout(0.5))
model.add(Dense(10,activation = 'relu',
kernel_regularizer = keras.regularizers.l2(0.001)))
model.add(keras.layers.Dropout(0.5))
model.add(Dense(2, activation = 'softmax'))
model.summary()
Model.summary可以查看整个模型的架构和参数的个数
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_19 (Dense) (None, 20) 180
_________________________________________________________________
dropout_7 (Dropout) (None, 20) 0
_________________________________________________________________
dense_20 (Dense) (None, 20) 420
_________________________________________________________________
dropout_8 (Dropout) (None, 20) 0
_________________________________________________________________
dense_21 (Dense) (None, 10) 210
_________________________________________________________________
dropout_9 (Dropout) (None, 10) 0
_________________________________________________________________
dense_22 (Dense) (None, 2) 22
=================================================================
Total params: 832
Trainable params: 832
Non-trainable params: 0
_________________________________________________________________
训练结果
最后我们看看正则化和Dropout后端的训练结果吧,是不是比之前漂亮多了。
image参考资料和数据来源
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.tensorflow.org/tutorials/
https://en.wikipedia.org/wiki/Overfitting
网友评论