小团队?大数据!

作者: Codlife | 来源:发表于2016-08-06 10:57 被阅读0次

大数据能为企业带来什么?更多的订单,更低的成本,更快捷的管理,更新的业务模式。然而在每轮技术变革中,中小企业似乎都是被最后照顾到的。在这场新变革的席卷下,我们不禁又要问小团队,你的大数据在哪里?

大数据之所以能称得上一个时代,来自于整个社会的集体狂欢。数据源于各行各业,这场变革带来的机遇自然蕴藏于各行各业之中。紧盯这个市场等待机遇的,无所谓IT巨头或是初创企业,无所谓团队规模是大是小。

大数据能为企业带来什么?更多的订单,更低的成本,更快捷的管理,更新的业务模式。巧妙善用互联网上的大数据, 小型创业团队就可以为自己快速积攒早期创业所需的资源,从而降低创业成本,提高收益率。然而我们却看到,在每轮技术变革中中小企业都是被最后照顾到的。在这场新变革的席卷下,我们不禁又要问小团队,你的大数据在哪里?

诚然,缺技术、缺人才、缺数据等种种现实,都将小团队置身于水深火热之中。那么大数据时代的小团队还有机会吗?

“当然有。”前小米数据工场负责人、现任火线数据创始人兼CEO、 WOT2016 讲师卢学裕在接受51CTO.com记者独家专访时,不仅给出明确的肯定答案,也结合他曾在优酷视频系统及小米数据工场的亲身实践,细细剖析面对种种问题下的小团队该如何做好技术选型,及如何权衡面临的大数据成用成本和数据隐私担忧。



小团队的大数据挑战

近几年,以Hadoop生态为代表的数据基础设施发展很快,给大数据技术的易用性提供了很大改善,也使技术门槛降低很多。

在卢学裕看来,小团队在大数据方面的挑战主要表现为人才短缺和数据来源。卢学裕讲到,为了应对这两个问题,小团队必须要在业务上下功夫,依据核心的业务形态,深入挖掘自身数据。

具体应该怎么做呢?卢学裕以视频用户数据举例。虽然用户在观看视频的过程中,没有太多的互动过程,但还是可以挖掘出价值非常大的高频数据。基于用户的拖拽、回看这样同一份数据,我们可以做到的可以有很多:

挖掘到不同用户对视频内容的High点,帮助视频的内容运营和内容创作找到用户兴趣点;

认识用户行为,找到相似用户,基于内容兴趣进行用户画像;

根据用户对内容上的喜好更好地进行CDN的预分发

根据用户行为做视频推荐

……

某种意义上说,视频推荐比商品推荐更容易。视频作为用户相对高频的行为,意味着我们能抓取到用户更多的行为数据,对用户的喜好反映更全面;从应用场景的角度来说,用户对于商品是否购买可能是一个很大的决定,而看不看视频相对决定很小,决定错误的损失也很小。在进行视频内容分析时,由于视频文本挖掘的维度偏少,因此进行文本分析的价值不大。

因此,同一技术在不同的业务领域上的重视程度,和起到的作用是不一样的。小团队由于自身技术能力和专业人才资源都有限,一定要更加细致地了解自己的业务形态,最大程度利用已有数据。

小米数据工场大数据平台架构

小米目前除了发展自己的公司,还投资了很多生态链企业。随着业务的快速增长,业务产生的数据量突飞猛涨。大家都知道,数据越集中,利用价值越大,由此小米数据工场应运而生。

小米数据工场主要承担着为全公司各团队及小米的生态链企业,提供数据采集、计算、存储等基础能力,以及机器学习、挖掘的工具和方法的任务。除了底层的能力,数据工场也为公司及生态链企业提供一些具体的基础数据服务,用于小米信用卡的风控和额度评估、广告精准投放、限时抢购时用数据打击黄牛等等。通过数据工场提供的数据能力,企业不仅能够对业务进行数据分析,也实实在在将数据应用到核心业务场景中。

围绕Hadoop生态构建基础平台

小米数据工场主要的工作是管理数据、元数据、数据权限,以及管理大量的计算。卢学裕强调,把数据存下来不是目的,而是要通过计算运用到各个业务领域中。小米及其生态链的业务场景丰富,因此整个计算体系是纷繁复杂的。

为了更好适应未来的需求,小米数据工场围绕Hadoop生态构建底层基础平台。虑到扩展性,数据工场天生基于Scala设计成分布式架构。由于小米及其生态链企业业务场景丰富,因此在技术选型方面全生态都会涉及,如消息流、批处理、实时计算等技术都需要用到,HBase、Hive、Spark、Storm 、Impala都在不同的场景下使用。

利用Docker解决异构和资源问题

为了管理好这些纷繁的计算框架和模型,在计算的执行方面,小米使用Docker来解决对环境的不同需求和异构问题,并且与Hive、Impala、Spark这些不同的计算模型都进行了对接,去适配不同应用场景计算不同数据的模型。另外,在不同业务场景下,同一个计算逻辑也可以选用不同的计算模型,Docker 的使用也避免了资源的浪费。比如一个计算任务每天凌晨运行,为了追求吞吐量,可以放到Hive里跑;还是同样一个计算模型,现在就要跑,可以不用更改,就放到Impala里运行。

总结看来,Docker不仅解决了环境的异构,也解决了资源问题。另外,Docker的环境适应性很强,做横向扩展会比较容易。

对于数据隐私方面,小米考虑得非常重。采用Docker与自身安全策略的综合,小米用户数据的隐私和安全性也得到了极其严格的控制。

小团队的大数据敏捷之路

选择热门的技术

小公司的时间耽误不起。选择热门的、常用的、经过大公司验证的技术,一是少踩坑,二是常用的技术人才相对好找。

按需使用,不要规划得太大

传统BI进行数据分析时通常会建立一个大而全的模型,再根据业务需求进行调整。但小团队的业务发展很快,因此在初期不要规划得太大,而是根据业务需要,细分业务场景,在每个小场景里构建小的数据模型,分析用户就建用户模型,分析产品用简单的产品模型。

另外,小团队要考虑到自己的应用场景是以分析型为主,还是应用型为主,之后再进行相关的技术选型,如Hive、Impala 、Presto等;而如果是以业务型为主,就要具体结合自身业务和技术能力综合来看。在数据量不是非常大的情况下,没必要选择HBase这样集群的存储方案,有许多产品可以替代。比如MySQL这类传统数据库能支持的数据规模也不小。根据计算要求和数据规模综合来选,不是超高量的不需要选太大规模的技术选型。

选择便捷、灵活和易于管理的技术

大公司在技术和系统使用上首先考虑的是集群的利用率和吞吐量,而小公司则要从便捷、灵活和易于管理的维度来考虑。

存储方面:建议使用以HDFS为主的存储,因为很多计算的工具所使用的存储都建立在它之上。对于业务未来的迅速发展,有比较好的兼容性;

计算方面:建议在选用常用的基础设施之外,具体计算用户交互时使用易于使用的技术:

HUE:基于web,在进行Hive 查询时可以直接在平台上完成,使用门槛更低;

Presto:适应数据源多,可以连接各种各样的数据源做计算和数据分析。由于业务数据和用户的行为数据时分开的。使用Presto这种连接器型的分析工具时,有分析能力的人就可以直接使用这种工具,我们不需要将不同的数据还要ETL导入到一起,后续还要做加工处理,只需要在物理打通就可以。

重视数据积累

小团队在前期积累数据时,一定要多花点儿功夫,不要偷懒,把数据尽可能采集全、采集准。千万不要等用到什么数据才去找数据,一旦发现你需要的数据之前没积累;或是积累的是错的;或是没有对数据进行标识,没办法区分这是哪个用户,陷入逻辑孤岛,都会非常麻烦。

比如我们需要采集用户在看一篇文章时的数据。这时我们应该将采集的维度考虑得更多,至少从用户本身的维度、文章内容、上下文关系、用互交互事件这四个维度上考虑。采集的数据可能包括文章分类、标题、内容ID、当前该文章热度、用户获取文章的渠道等等。这会让我们更全面地了解用户的喜好,也将用户的路径分析的很清楚。

哪怕未来不知道怎么用,采集更多更全的数据一定会对应用产生价值。在存储成本较低的现状下,多采集数据带来的代价并不大。真正昂贵的其实是计算,而一旦没有数据,代价将会更大。

大数据是工具

对于创业公司来说,在更短的时间内创造更大的价值,是企业得以存活的根本。大数据是工具,了解大数据的作用,结合业务的真实场据,满足用户需求,大数据才能真的帮得上你

相关文章

  • 小团队?大数据!

    大数据能为企业带来什么?更多的订单,更低的成本,更快捷的管理,更新的业务模式。然而在每轮技术变革中,中小企业似乎都...

  • 语音日记07-跨团队沟通

    今天学到了在职场中跨团队沟通的一种方式:大A小a,大B小b。 大A小a是一个团队的,大B小b是一个团队的。 在跨团...

  • 大型网站java中间件,总的来说就是cobar,roketmq,

    关键词记录 请求数据包小,返回数据大 ,差别不大 请求数据包大,返回数据小,差别大 代理 ----》热备 服务自治...

  • 六号线晚报0801

    亚马逊团队规则:没有团队应该大到需要分食两个披萨 亚马逊微服务团队规则 所有团队通过服务接口开放他们的数据和功能;...

  • “小”数据,“大”变更

    可以毫不夸张的说,将来的整个商业市场,都将因大数据而从新洗牌。 如今,数据已经成为一种商业资产,一项重要的经济投入...

  • “小”数据,“大”变革

    可以毫不夸张的说,将来的整个商业市场,都将因大数据而从新洗牌。 如今,数据已经成为一种商业资产,一项重要的经济投入...

  • 袋鼠云数据可视化大屏技术揭秘|数据地图的类型

    专栏卷首语袋鼠云数据可视化大屏团队拥有业内领先的数据可视化大屏故事策划、视觉设计、前端和数据开发技术实力,尤其擅长...

  • 组织革新-杨国安

    3+1客户中心/创新/敏捷+数据 组织进化:团队(小创业团队)+平台(赋能)+管理(文化) 组织创新:阿米巴/网络...

  • 漂亮得不像实力派 | 袋鼠云数据中台门面担当 之 Easy[V]

    专栏卷首语: 漂亮得不像实力派 - 袋鼠云数据可视化大屏技术解密 袋鼠云数据可视化大屏团队拥有业内领先的数据可视化...

  • 敏捷团队的大与小

    团队为什么不能太大? 之前在看敏捷实践的相关书籍时,都会说敏捷团队的人数不能太多,最好控制在9人以下,一般一个团队...

网友评论

    本文标题:小团队?大数据!

    本文链接:https://www.haomeiwen.com/subject/bhyksttx.html