美文网首页
072 Edit Distance

072 Edit Distance

作者: 烟雨醉尘缘 | 来源:发表于2019-02-16 16:09 被阅读0次

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
    You have the following 3 operations permitted on a word:
    1.Insert a character
    2.Delete a character
    3.Replace a character

    Example:

    Input: word1 = "horse", word2 = "ros"
    Output: 3
    Explanation:
    horse -> rorse (replace 'h' with 'r')
    rorse -> rose (remove 'r')
    rose -> ros (remove 'e')

    Input: word1 = "intention", word2 = "execution"
    Output: 5
    Explanation:
    intention -> inention (remove 't')
    inention -> enention (replace 'i' with 'e')
    enention -> exention (replace 'n' with 'x')
    exention -> exection (replace 'n' with 'c')
    exection -> execution (insert 'u')

    解释下题目:

    找到从一个字符串经过最少的变化次数

    1. DP

    实际耗时:7ms

    public int minDistance(String word1, String word2) {
            int m = word1.length();
            int n = word2.length();
            int matrix[][] = new int[m + 1][n + 1];
    
            //初始化
            for (int i = 0; i <= m; i++) {
                matrix[i][0] = i;
            }
            for (int i = 1; i <= n; i++) {
                matrix[0][i] = i;
            }
    
            for (int i = 1; i <= m; i++) {
                for (int j = 1; j <= n; j++) {
                    if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                        matrix[i][j] = matrix[i - 1][j - 1];
                    } else {
                        int replace = matrix[i - 1][j - 1];
                        int delete = matrix[i][j - 1];
                        int insert = matrix[i - 1][j];
                        if (replace <= delete && replace <= insert) {
                            matrix[i][j] = replace + 1;
                        } else if (delete <= replace && delete <= insert) {
                            matrix[i][j] = delete + 1;
                        } else {
                            matrix[i][j] = insert + 1;
                        }
                    }
                }
            }
    
            return matrix[m][n];
        }
    

      思路:上过卜东波老师的算法课之后就很简单了,因为课上讲了类似的题目。假设word1和word2分别在第i处和第j处断开,则假设word1的前i个字符需要经过n步变为word2的前j个字符串,则定义matrix[i][j] = n。所以如果word1[i] ==word2[j]的时候,直接照抄,而剩下的增删和修改对应三个位置即可。

    时间复杂度O(mn)
    空间复杂度O(mn) 可以做到 O(n)

    相关文章

      网友评论

          本文标题:072 Edit Distance

          本文链接:https://www.haomeiwen.com/subject/fftieqtx.html