1.0 Python等比缩放图片
import cv2
import sys,os
os.chdir(sys.path[0]) #切换当当前路径
if __name__ =='__main__':
img_path = "./img/test.jpg" #定义图片的相对路径
img = cv2.imread(img_path) #读入图片
resize_img1 = cv2.resize(img,(250,400)) #特定像素缩放
resize_img2 = cv2.resize(img,(0,0),fx = 0.5,fy = 0.5) #等比例缩放 fx,fy 分别是X轴,y轴的缩放比例
cv2.imshow("img",img) #显示原图
cv2.imshow("resize_img1",resize_img1) #显示缩放图1
cv2.imshow("resize_img2",resize_img2) #显示缩放图2
cv2.waitKey(-1) #等待按键 不然会一闪而过
2.0 C++等比缩放图片
#include <iostream>
#include <opencv2\opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
string img_path = "./img/test.jpg"; //定义图片的相对路径
Mat img = imread(img_path); //读取图片
Mat img_resize1, img_resize2; //定义缩放图像
resize(img, img_resize1, Size(250, 400)); //特定像素缩放
resize(img, img_resize2, Size(0, 0), 0.5, 0.5); //等比例缩放 0.5,0.5分别是X轴,y轴的缩放比例
imshow("img", img); //显示原图
imshow("img_resize1", img_resize1); //显示缩放图1
imshow("img_resize2", img_resize2); //显示缩放图2
waitKey(-1); //等待按键 不然会一闪而过
return 0;
}
3.0 运行结果
![]() |
![]() |
---|
4.0 源码展示
void cv::resize( InputArray _src, OutputArray _dst, Size dsize,double inv_scale_x, double inv_scale_y, int interpolation )
void cv::resize( InputArray _src, OutputArray _dst, Size dsize,double inv_scale_x, double inv_scale_y, int interpolation )
{
CV_INSTRUMENT_REGION();
Size ssize = _src.size();
CV_Assert( !ssize.empty() );
if( dsize.empty() )
{
CV_Assert(inv_scale_x > 0); CV_Assert(inv_scale_y > 0);
dsize = Size(saturate_cast<int>(ssize.width*inv_scale_x),
saturate_cast<int>(ssize.height*inv_scale_y));
CV_Assert( !dsize.empty() );
}
else
{
inv_scale_x = (double)dsize.width/ssize.width;
inv_scale_y = (double)dsize.height/ssize.height;
CV_Assert(inv_scale_x > 0); CV_Assert(inv_scale_y > 0);
}
if (interpolation == INTER_LINEAR_EXACT && (_src.depth() == CV_32F || _src.depth() == CV_64F))
interpolation = INTER_LINEAR; // If depth isn't supported fallback to generic resize
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat() && _src.cols() > 10 && _src.rows() > 10,
ocl_resize(_src, _dst, dsize, inv_scale_x, inv_scale_y, interpolation))
Mat src = _src.getMat();
_dst.create(dsize, src.type());
Mat dst = _dst.getMat();
if (dsize == ssize)
{
// Source and destination are of same size. Use simple copy.
src.copyTo(dst);
return;
}
hal::resize(src.type(), src.data, src.step, src.cols, src.rows, dst.data, dst.step, dst.cols, dst.rows, inv_scale_x, inv_scale_y, interpolation);
}
static bool ocl_resize( InputArray _src, OutputArray _dst, Size dsize,double fx, double fy, int interpolation)
static bool ocl_resize( InputArray _src, OutputArray _dst, Size dsize,double fx, double fy, int interpolation)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
double inv_fx = 1.0 / fx, inv_fy = 1.0 / fy;
float inv_fxf = (float)inv_fx, inv_fyf = (float)inv_fy;
int iscale_x = saturate_cast<int>(inv_fx), iscale_y = saturate_cast<int>(inv_fx);
bool is_area_fast = std::abs(inv_fx - iscale_x) < DBL_EPSILON &&
std::abs(inv_fy - iscale_y) < DBL_EPSILON;
// in case of scale_x && scale_y is equal to 2
// INTER_AREA (fast) also is equal to INTER_LINEAR
if( interpolation == INTER_LINEAR && is_area_fast && iscale_x == 2 && iscale_y == 2 )
/*interpolation = INTER_AREA*/CV_UNUSED(0); // INTER_AREA is slower
if( !(cn <= 4 &&
(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR ||
(interpolation == INTER_AREA && inv_fx >= 1 && inv_fy >= 1) )) )
return false;
UMat src = _src.getUMat();
_dst.create(dsize, type);
UMat dst = _dst.getUMat();
Size ssize = src.size();
ocl::Kernel k;
size_t globalsize[] = { (size_t)dst.cols, (size_t)dst.rows };
ocl::Image2D srcImage;
// See if this could be done with a sampler. We stick with integer
// datatypes because the observed error is low.
bool useSampler = (interpolation == INTER_LINEAR && ocl::Device::getDefault().imageSupport() &&
ocl::Image2D::canCreateAlias(src) && depth <= 4 &&
ocl::Image2D::isFormatSupported(depth, cn, true) &&
src.offset==0);
if (useSampler)
{
int wdepth = std::max(depth, CV_32S);
char buf[2][32];
cv::String compileOpts = format("-D USE_SAMPLER -D depth=%d -D T=%s -D T1=%s "
"-D convertToDT=%s -D cn=%d",
depth, ocl::typeToStr(type), ocl::typeToStr(depth),
ocl::convertTypeStr(wdepth, depth, cn, buf[1]),
cn);
k.create("resizeSampler", ocl::imgproc::resize_oclsrc, compileOpts);
if (k.empty())
useSampler = false;
else
{
// Convert the input into an OpenCL image type, using normalized channel data types
// and aliasing the UMat.
srcImage = ocl::Image2D(src, true, true);
k.args(srcImage, ocl::KernelArg::WriteOnly(dst),
(float)inv_fx, (float)inv_fy);
}
}
if (interpolation == INTER_LINEAR && !useSampler)
{
char buf[2][32];
// integer path is slower because of CPU part, so it's disabled
if (depth == CV_8U && ((void)0, 0))
{
AutoBuffer<uchar> _buffer((dsize.width + dsize.height)*(sizeof(int) + sizeof(short)*2));
int* xofs = (int*)_buffer.data(), * yofs = xofs + dsize.width;
short* ialpha = (short*)(yofs + dsize.height), * ibeta = ialpha + dsize.width*2;
float fxx, fyy;
int sx, sy;
for (int dx = 0; dx < dsize.width; dx++)
{
fxx = (float)((dx+0.5)*inv_fx - 0.5);
sx = cvFloor(fxx);
fxx -= sx;
if (sx < 0)
fxx = 0, sx = 0;
if (sx >= ssize.width-1)
fxx = 0, sx = ssize.width-1;
xofs[dx] = sx;
ialpha[dx*2 + 0] = saturate_cast<short>((1.f - fxx) * INTER_RESIZE_COEF_SCALE);
ialpha[dx*2 + 1] = saturate_cast<short>(fxx * INTER_RESIZE_COEF_SCALE);
}
for (int dy = 0; dy < dsize.height; dy++)
{
fyy = (float)((dy+0.5)*inv_fy - 0.5);
sy = cvFloor(fyy);
fyy -= sy;
yofs[dy] = sy;
ibeta[dy*2 + 0] = saturate_cast<short>((1.f - fyy) * INTER_RESIZE_COEF_SCALE);
ibeta[dy*2 + 1] = saturate_cast<short>(fyy * INTER_RESIZE_COEF_SCALE);
}
int wdepth = std::max(depth, CV_32S), wtype = CV_MAKETYPE(wdepth, cn);
UMat coeffs;
Mat(1, static_cast<int>(_buffer.size()), CV_8UC1, _buffer.data()).copyTo(coeffs);
k.create("resizeLN", ocl::imgproc::resize_oclsrc,
format("-D INTER_LINEAR_INTEGER -D depth=%d -D T=%s -D T1=%s "
"-D WT=%s -D convertToWT=%s -D convertToDT=%s -D cn=%d "
"-D INTER_RESIZE_COEF_BITS=%d",
depth, ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(wtype),
ocl::convertTypeStr(depth, wdepth, cn, buf[0]),
ocl::convertTypeStr(wdepth, depth, cn, buf[1]),
cn, INTER_RESIZE_COEF_BITS));
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst),
ocl::KernelArg::PtrReadOnly(coeffs));
}
else
{
int wdepth = std::max(depth, CV_32S), wtype = CV_MAKETYPE(wdepth, cn);
k.create("resizeLN", ocl::imgproc::resize_oclsrc,
format("-D INTER_LINEAR -D depth=%d -D T=%s -D T1=%s "
"-D WT=%s -D convertToWT=%s -D convertToDT=%s -D cn=%d "
"-D INTER_RESIZE_COEF_BITS=%d",
depth, ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(wtype),
ocl::convertTypeStr(depth, wdepth, cn, buf[0]),
ocl::convertTypeStr(wdepth, depth, cn, buf[1]),
cn, INTER_RESIZE_COEF_BITS));
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst),
(float)inv_fx, (float)inv_fy);
}
}
else if (interpolation == INTER_NEAREST)
{
k.create("resizeNN", ocl::imgproc::resize_oclsrc,
format("-D INTER_NEAREST -D T=%s -D T1=%s -D cn=%d",
ocl::vecopTypeToStr(type), ocl::vecopTypeToStr(depth), cn));
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst),
(float)inv_fx, (float)inv_fy);
}
else if (interpolation == INTER_AREA)
{
int wdepth = std::max(depth, is_area_fast ? CV_32S : CV_32F);
int wtype = CV_MAKE_TYPE(wdepth, cn);
char cvt[2][40];
String buildOption = format("-D INTER_AREA -D T=%s -D T1=%s -D WTV=%s -D convertToWTV=%s -D cn=%d",
ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(wtype),
ocl::convertTypeStr(depth, wdepth, cn, cvt[0]), cn);
UMat alphaOcl, tabofsOcl, mapOcl;
UMat dmap, smap;
if (is_area_fast)
{
int wdepth2 = std::max(CV_32F, depth), wtype2 = CV_MAKE_TYPE(wdepth2, cn);
buildOption = buildOption + format(" -D convertToT=%s -D WT2V=%s -D convertToWT2V=%s -D INTER_AREA_FAST"
" -D XSCALE=%d -D YSCALE=%d -D SCALE=%ff",
ocl::convertTypeStr(wdepth2, depth, cn, cvt[0]),
ocl::typeToStr(wtype2), ocl::convertTypeStr(wdepth, wdepth2, cn, cvt[1]),
iscale_x, iscale_y, 1.0f / (iscale_x * iscale_y));
k.create("resizeAREA_FAST", ocl::imgproc::resize_oclsrc, buildOption);
if (k.empty())
return false;
}
else
{
buildOption = buildOption + format(" -D convertToT=%s", ocl::convertTypeStr(wdepth, depth, cn, cvt[0]));
k.create("resizeAREA", ocl::imgproc::resize_oclsrc, buildOption);
if (k.empty())
return false;
int xytab_size = (ssize.width + ssize.height) << 1;
int tabofs_size = dsize.height + dsize.width + 2;
AutoBuffer<int> _xymap_tab(xytab_size), _xyofs_tab(tabofs_size);
AutoBuffer<float> _xyalpha_tab(xytab_size);
int * xmap_tab = _xymap_tab.data(), * ymap_tab = _xymap_tab.data() + (ssize.width << 1);
float * xalpha_tab = _xyalpha_tab.data(), * yalpha_tab = _xyalpha_tab.data() + (ssize.width << 1);
int * xofs_tab = _xyofs_tab.data(), * yofs_tab = _xyofs_tab.data() + dsize.width + 1;
ocl_computeResizeAreaTabs(ssize.width, dsize.width, inv_fx, xmap_tab, xalpha_tab, xofs_tab);
ocl_computeResizeAreaTabs(ssize.height, dsize.height, inv_fy, ymap_tab, yalpha_tab, yofs_tab);
// loading precomputed arrays to GPU
Mat(1, xytab_size, CV_32FC1, _xyalpha_tab.data()).copyTo(alphaOcl);
Mat(1, xytab_size, CV_32SC1, _xymap_tab.data()).copyTo(mapOcl);
Mat(1, tabofs_size, CV_32SC1, _xyofs_tab.data()).copyTo(tabofsOcl);
}
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnly(src), dstarg = ocl::KernelArg::WriteOnly(dst);
if (is_area_fast)
k.args(srcarg, dstarg);
else
k.args(srcarg, dstarg, inv_fxf, inv_fyf, ocl::KernelArg::PtrReadOnly(tabofsOcl),
ocl::KernelArg::PtrReadOnly(mapOcl), ocl::KernelArg::PtrReadOnly(alphaOcl));
return k.run(2, globalsize, NULL, false);
}
return k.run(2, globalsize, 0, false);
}
网友评论