深度学习Course 2踩坑记

作者: Wincent__ | 来源:发表于2019-09-28 20:20 被阅读0次

  Deep learning by Andrew NG在Course2的作业挺多坑的,可能是当时他布置作业时的环境比较旧,而现在搭建的Anaconda环境相对较新,有些方法已经不适用而造成的的。

先完成Regularizaion的作业,运行

\COURSE 2 Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization\week5\Regularization\Regularization.ipynb

第一坑:

首先踩到的第一个坑是如下提示:

train_X, train_Y, test_X, test_Y = load_2D_dataset()

TypeError                                Traceback (most recent call last)

d:\Anaconda3\lib\site-packages\matplotlib\colors.py in to_rgba(c, alpha)

    173    try:

--> 174        rgba = _colors_full_map.cache[c, alpha]

    175    except (KeyError, TypeError):  # Not in cache, or unhashable.

TypeError: unhashable type: 'numpy.ndarray'

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)

d:\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py in scatter(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, **kwargs)

  4231            try:  # Then is 'c' acceptable as PathCollection facecolors?

-> 4232                colors = mcolors.to_rgba_array(c)

  4233                n_elem = colors.shape[0]

d:\Anaconda3\lib\site-packages\matplotlib\colors.py in to_rgba_array(c, alpha)

    274    for i, cc in enumerate(c):

--> 275        result[i] = to_rgba(cc, alpha)

    276    return result

d:\Anaconda3\lib\site-packages\matplotlib\colors.py in to_rgba(c, alpha)

    175    except (KeyError, TypeError):  # Not in cache, or unhashable.

--> 176        rgba = _to_rgba_no_colorcycle(c, alpha)

    177        try:

d:\Anaconda3\lib\site-packages\matplotlib\colors.py in _to_rgba_no_colorcycle(c, alpha)

    230    if len(c) not in [3, 4]:

--> 231        raise ValueError("RGBA sequence should have length 3 or 4")

    232    if len(c) == 3 and alpha is None:

ValueError: RGBA sequence should have length 3 or 4

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)

<ipython-input-5-a9a84d38b990> in <module>

----> 1 train_X, train_Y, test_X, test_Y = load_2D_dataset()

~\Desktop\COURSE 2 Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization\week5\Regularization\reg_utils.py in load_2D_dataset()

    332    test_Y = data['yval'].T

    333

--> 334    plt.scatter(train_X[0, :], train_X[1, :], c=train_Y, s=40, cmap=plt.cm.Spectral);

    335

    336    return train_X, train_Y, test_X, test_Y

d:\Anaconda3\lib\site-packages\matplotlib\pyplot.py in scatter(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, data, **kwargs)

  2860        vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths,

  2861        verts=verts, edgecolors=edgecolors, **({"data": data} if data

-> 2862        is not None else {}), **kwargs)

  2863    sci(__ret)

  2864    return __ret

d:\Anaconda3\lib\site-packages\matplotlib\__init__.py in inner(ax, data, *args, **kwargs)

  1808                        "the Matplotlib list!)" % (label_namer, func.__name__),

  1809                        RuntimeWarning, stacklevel=2)

-> 1810            return func(ax, *args, **kwargs)

  1811

  1812        inner.__doc__ = _add_data_doc(inner.__doc__,

d:\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py in scatter(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, **kwargs)

  4243                        "acceptable for use with 'x' with size {xs}, "

  4244                        "'y' with size {ys}."

-> 4245                        .format(nc=n_elem, xs=x.size, ys=y.size)

  4246                    )

  4247                # Both the mapping *and* the RGBA conversion failed: pretty

ValueError: 'c' argument has 1 elements, which is not acceptable for use with 'x' with size 211, 'y' with size 211.

出现这种问题的原因是plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)这个函数太旧了,

解决方案如下即可

按提示找到reg_utils.py文件就在作业的同一个目录。

在顶部import如下

import operator

from functools import reduce

然后分别在

plot_decision_boundary()和load_2D_dataset()找到plt.scatter方法,替换成

plt.scatter(X[0, :], X[1, :], c=reduce(operator.add, y), s=40, cmap=plt.cm.Spectral)

第二坑:

TypeError Traceback (most recent call last)

d:\Anaconda3\lib\site-packages\matplotlib\colors.py in to_rgba(c, alpha)

    173    try:

--> 174        rgba = _colors_full_map.cache[c, alpha]

    175    except (KeyError, TypeError):  # Not in cache, or unhashable.

TypeError: unhashable type: 'numpy.ndarray'

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)

d:\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py in scatter(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, **kwargs)

  4231            try:  # Then is 'c' acceptable as PathCollection facecolors?

-> 4232                colors = mcolors.to_rgba_array(c)

  4233                n_elem = colors.shape[0]

d:\Anaconda3\lib\site-packages\matplotlib\colors.py in to_rgba_array(c, alpha)

    274    for i, cc in enumerate(c):

--> 275        result[i] = to_rgba(cc, alpha)

    276    return result

d:\Anaconda3\lib\site-packages\matplotlib\colors.py in to_rgba(c, alpha)

    175    except (KeyError, TypeError):  # Not in cache, or unhashable.

--> 176        rgba = _to_rgba_no_colorcycle(c, alpha)

    177        try:

d:\Anaconda3\lib\site-packages\matplotlib\colors.py in _to_rgba_no_colorcycle(c, alpha)

    230    if len(c) not in [3, 4]:

--> 231        raise ValueError("RGBA sequence should have length 3 or 4")

    232    if len(c) == 3 and alpha is None:

ValueError: RGBA sequence should have length 3 or 4

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)

<ipython-input-7-a9a84d38b990> in <module>

----> 1 train_X, train_Y, test_X, test_Y = load_2D_dataset()

~\Desktop\COURSE 2 Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization\week5\Regularization\reg_utils.py in load_2D_dataset()

    332    train_X = data['X'].T

    333    train_Y = data['y'].T

--> 334    test_X = data['Xval'].T

    335    test_Y = data['yval'].T

    336

d:\Anaconda3\lib\site-packages\matplotlib\pyplot.py in scatter(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, data, **kwargs)

  2860        vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths,

  2861        verts=verts, edgecolors=edgecolors, **({"data": data} if data

-> 2862        is not None else {}), **kwargs)

  2863    sci(__ret)

  2864    return __ret

d:\Anaconda3\lib\site-packages\matplotlib\__init__.py in inner(ax, data, *args, **kwargs)

  1808                        "the Matplotlib list!)" % (label_namer, func.__name__),

  1809                        RuntimeWarning, stacklevel=2)

-> 1810            return func(ax, *args, **kwargs)

  1811

  1812        inner.__doc__ = _add_data_doc(inner.__doc__,

d:\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py in scatter(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, **kwargs)

  4243                        "acceptable for use with 'x' with size {xs}, "

  4244                        "'y' with size {ys}."

-> 4245                        .format(nc=n_elem, xs=x.size, ys=y.size)

  4246                    )

  4247                # Both the mapping *and* the RGBA conversion failed: pretty

ValueError: 'c' argument has 1 elements, which is not acceptable for use with 'x' with size 211, 'y' with size 211.

==========================================

Traceback (most recent call last):

  File "d:\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3296, in run_code

    exec(code_obj, self.user_global_ns, self.user_ns)

  File "<ipython-input-1-0b76c4151612>", line 4, in <module>

    from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec

  File "C:\Users\34657\Desktop\COURSE 2 Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization\week5\Regularization\reg_utils.py", line 328

    plt.scatter(X[0, :], X[1, :], c=reduce(operator.add, Y), s=40, cmap=plt.cm.Spectral)

                                                                                        ^

TabError: inconsistent use of tabs and spaces in indentation

分析

提示空格问题??然而所有打开来看又很正常啊!

其实很多表面的正常,背后都隐藏着不正常,你看到的是隔开了,但实际上它可能是/t而不是我们普遍认为的/space

参考这位网友的方案https://blog.csdn.net/qq_41096996/article/details/85947560

将上面的真空格替换错误行的假空格就OK了

相关文章

网友评论

    本文标题:深度学习Course 2踩坑记

    本文链接:https://www.haomeiwen.com/subject/fhwtpctx.html