本文是对官方文档 的学习笔记。
Layer 类
在 Keras 中 layer 是一个核心组件, 它主要包含了连接权重以及算法。 如下是一个全连接层 Densely-connected.
class Linear(keras.layers.Layer):
def __init__(self, units=32, input_dim=32):
super(Linear, self).__init__()
w_init = tf.random_normal_initializer()
self.w = tf.Variable(
initial_value=w_init(shape=(input_dim, units), dtype="float32"),
trainable=True,
)
b_init = tf.zeros_initializer()
self.b = tf.Variable(
initial_value=b_init(shape=(units,), dtype="float32"), trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
调用上面的 Layer
x = tf.ones((2, 2))
linear_layer = Linear(4, 2)
y = linear_layer(x)
print(y)
利用 add_weight()
初始化 weight
class Linear(keras.layers.Layer):
def __init__(self, units=32, input_dim=32):
super(Linear, self).__init__()
self.w = self.add_weight(
shape=(input_dim, units), initializer="random_normal", trainable=True
)
self.b = self.add_weight(shape=(units,), initializer="zeros", trainable=True)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
x = tf.ones((2, 2))
linear_layer = Linear(4, 2)
y = linear_layer(x)
print(y)
不可训练权重 (non-trainable weights)
开发者可以在自己的 Layer 中加入一些不可变权重, 这些权重在反向传播(backpropagation) 中不会被改变。
class ComputeSum(keras.layers.Layer):
def __init__(self, input_dim):
super(ComputeSum, self).__init__()
self.total = tf.Variable(initial_value=tf.zeros((input_dim,)), trainable=False)
def call(self, inputs):
self.total.assign_add(tf.reduce_sum(inputs, axis=0))
return self.total
x = tf.ones((2, 2))
my_sum = ComputeSum(2)
y = my_sum(x)
print(y.numpy())
y = my_sum(x)
print(y.numpy())
print("weights:", len(my_sum.weights))
print("non-trainable weights:", len(my_sum.non_trainable_weights))
# It's not included in the trainable weights:
print("trainable_weights:", my_sum.trainable_weights)
最佳实践(Best practice):知道Input shape 之后再创建权重
如下,不要再 init 中创建weight, 而是将其放在 build 函数中。 在模型第一次被使用时,call 会自动调用 build 函数, 因而weight 就会被创建。
class Linear(keras.layers.Layer):
def __init__(self, units=32):
super(Linear, self).__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
shape=(self.units,), initializer="random_normal", trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
# At instantiation, we don't know on what inputs this is going to get called
linear_layer = Linear(32)
# The layer's weights are created dynamically the first time the layer is called
y = linear_layer(x)
Layer 可以嵌套 Layer
外层Layer 会tracking 内部layer 的权重, 创建子层的操作最好放在 init 函数中:
# Let's assume we are reusing the Linear class
# with a `build` method that we defined above.
class MLPBlock(keras.layers.Layer):
def __init__(self):
super(MLPBlock, self).__init__()
self.linear_1 = Linear(32)
self.linear_2 = Linear(32)
self.linear_3 = Linear(1)
def call(self, inputs):
x = self.linear_1(inputs)
x = tf.nn.relu(x)
x = self.linear_2(x)
x = tf.nn.relu(x)
return self.linear_3(x)
mlp = MLPBlock()
y = mlp(tf.ones(shape=(3, 64))) # The first call to the `mlp` will create the weights
print("weights:", len(mlp.weights))
print("trainable weights:", len(mlp.trainable_weights))
add_loss() 函数
可以利用 add_loss() 创建一个 Regularization Layer , 专门计算Regularization。
# A layer that creates an activity regularization loss
class ActivityRegularizationLayer(keras.layers.Layer):
def __init__(self, rate=1e-2):
super(ActivityRegularizationLayer, self).__init__()
self.rate = rate
def call(self, inputs):
self.add_loss(self.rate * tf.reduce_sum(inputs))
return inputs
class OuterLayer(keras.layers.Layer):
def __init__(self):
super(OuterLayer, self).__init__()
self.activity_reg = ActivityRegularizationLayer(1e-2)
def call(self, inputs):
return self.activity_reg(inputs)
layer = OuterLayer()
assert len(layer.losses) == 0 # No losses yet since the layer has never been called
_ = layer(tf.zeros(1, 1))
assert len(layer.losses) == 1 # We created one loss value
# `layer.losses` gets reset at the start of each __call__
_ = layer(tf.zeros(1, 1))
assert len(layer.losses) == 1 # This is the loss created during the call above
所有子layer 的 Regularization 都会被最外层计算
class OuterLayerWithKernelRegularizer(keras.layers.Layer):
def __init__(self):
super(OuterLayerWithKernelRegularizer, self).__init__()
self.dense = keras.layers.Dense(
32, kernel_regularizer=tf.keras.regularizers.l2(1e-3)
)
def call(self, inputs):
return self.dense(inputs)
layer = OuterLayerWithKernelRegularizer()
_ = layer(tf.zeros((1, 1)))
# This is `1e-3 * sum(layer.dense.kernel ** 2)`,
# created by the `kernel_regularizer` above.
print(layer.losses)
新加的Loss在训练的时候, 会被记入损失值
# Instantiate an optimizer.
optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3)
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# Iterate over the batches of a dataset.
for x_batch_train, y_batch_train in train_dataset:
with tf.GradientTape() as tape:
logits = layer(x_batch_train) # Logits for this minibatch
# Loss value for this minibatch
loss_value = loss_fn(y_batch_train, logits)
# Add extra losses created during this forward pass:
loss_value += sum(model.losses)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
这里涉及到自己实现训练,具体信息可以参考 guide to writing a training loop from scratch.
这些 Loss 函数也可以配合 Keras 内建的 fit
import numpy as np
inputs = keras.Input(shape=(3,))
outputs = ActivityRegularizationLayer()(inputs)
model = keras.Model(inputs, outputs)
# If there is a loss passed in `compile`, thee regularization
# losses get added to it
model.compile(optimizer="adam", loss="mse")
model.fit(np.random.random((2, 3)), np.random.random((2, 3)))
# It's also possible not to pass any loss in `compile`,
# since the model already has a loss to minimize, via the `add_loss`
# call during the forward pass!
model.compile(optimizer="adam")
model.fit(np.random.random((2, 3)), np.random.random((2, 3)))
add_metric
类似 loss 函数, metric 也可以自行定义。
class LogisticEndpoint(keras.layers.Layer):
def __init__(self, name=None):
super(LogisticEndpoint, self).__init__(name=name)
self.loss_fn = keras.losses.BinaryCrossentropy(from_logits=True)
self.accuracy_fn = keras.metrics.BinaryAccuracy()
def call(self, targets, logits, sample_weights=None):
# Compute the training-time loss value and add it
# to the layer using `self.add_loss()`.
loss = self.loss_fn(targets, logits, sample_weights)
self.add_loss(loss)
# Log accuracy as a metric and add it
# to the layer using `self.add_metric()`.
acc = self.accuracy_fn(targets, logits, sample_weights)
self.add_metric(acc, name="accuracy")
# Return the inference-time prediction tensor (for `.predict()`).
return tf.nn.softmax(logits)
这样使用 Metric 的好处是易于跟中其在训练中的变化
layer = LogisticEndpoint()
targets = tf.ones((2, 2))
logits = tf.ones((2, 2))
y = layer(targets, logits)
print("layer.metrics:", layer.metrics)
print("current accuracy value:", float(layer.metrics[0].result()))
在 fit 中也是同样
inputs = keras.Input(shape=(3,), name="inputs")
targets = keras.Input(shape=(10,), name="targets")
logits = keras.layers.Dense(10)(inputs)
predictions = LogisticEndpoint(name="predictions")(logits, targets)
model = keras.Model(inputs=[inputs, targets], outputs=predictions)
model.compile(optimizer="adam")
data = {
"inputs": np.random.random((3, 3)),
"targets": np.random.random((3, 10)),
}
model.fit(data)
在 Layer 中开启序列化
如果在Layer 类中实现 get_config
那么就可以实现对 layer 的序列化, 进而单独 save/load 一层
class Linear(keras.layers.Layer):
def __init__(self, units=32):
super(Linear, self).__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
shape=(self.units,), initializer="random_normal", trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
def get_config(self):
return {"units": self.units}
# Now you can recreate the layer from its config:
layer = Linear(64)
config = layer.get_config()
print(config)
new_layer = Linear.from_config(config)
如果打算序列化层, 那么在 __init__
函数里,最好把输入的重要参数都保存到 config 中,以便使用。
class Linear(keras.layers.Layer):
def __init__(self, units=32, **kwargs):
super(Linear, self).__init__(**kwargs)
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
shape=(self.units,), initializer="random_normal", trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
def get_config(self):
config = super(Linear, self).get_config()
config.update({"units": self.units})
return config
layer = Linear(64)
config = layer.get_config()
print(config)
new_layer = Linear.from_config(config)
如果想定制反序列化, 可以重载 from_config
:
def from_config(cls, config):
return cls(**config)
在 Call 函数中使用 Training 参数
有些 Layer 在训练和预测时表现不一样, 所以就需要在Call 函数中得知当前是在训练还是在预测。
class CustomDropout(keras.layers.Layer):
def __init__(self, rate, **kwargs):
super(CustomDropout, self).__init__(**kwargs)
self.rate = rate
def call(self, inputs, training=None):
if training:
return tf.nn.dropout(inputs, rate=self.rate)
return inputs
在 Call 函数中使用 Mask 参数
简介没看明白, 详情请移步 "understanding padding and masking".
Model 类
对于定制化模型,一般来说,用Layer 来实现内部结果, 然后用Model 类来作为外层封装。 Model类和 Layer 类的 API 格式相同, 但有如下区别:
- 会暴露内建的训练函数,比如:
model.fit()
,model.evaluate()
,model.predict()
- 会通过
model.layers
暴露内部的层结构 - 会暴露save 和序列化函数 :
save()
,save_weights()
...
什么时候用 Model 什么时候用 Layer ?
如果这个类会用到 fit , save 则需要用 Model 类, 否则用 fit。
class ResNet(tf.keras.Model):
def __init__(self):
super(ResNet, self).__init__()
self.block_1 = ResNetBlock()
self.block_2 = ResNetBlock()
self.global_pool = layers.GlobalAveragePooling2D()
self.classifier = Dense(num_classes)
def call(self, inputs):
x = self.block_1(inputs)
x = self.block_2(x)
x = self.global_pool(x)
return self.classifier(x)
resnet = ResNet()
dataset = ...
resnet.fit(dataset, epochs=10)
resnet.save(filepath)
一个End-To-End 的例子
这里用一个 AutoEncoder 来展示如何用 Layer ,Model 来完成一个 端到端 (End-To-End ) 的模型:
from tensorflow.keras import layers
class Sampling(layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
class Encoder(layers.Layer):
"""Maps MNIST digits to a triplet (z_mean, z_log_var, z)."""
def __init__(self, latent_dim=32, intermediate_dim=64, name="encoder", **kwargs):
super(Encoder, self).__init__(name=name, **kwargs)
self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
self.dense_mean = layers.Dense(latent_dim)
self.dense_log_var = layers.Dense(latent_dim)
self.sampling = Sampling()
def call(self, inputs):
x = self.dense_proj(inputs)
z_mean = self.dense_mean(x)
z_log_var = self.dense_log_var(x)
z = self.sampling((z_mean, z_log_var))
return z_mean, z_log_var, z
class Decoder(layers.Layer):
"""Converts z, the encoded digit vector, back into a readable digit."""
def __init__(self, original_dim, intermediate_dim=64, name="decoder", **kwargs):
super(Decoder, self).__init__(name=name, **kwargs)
self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
self.dense_output = layers.Dense(original_dim, activation="sigmoid")
def call(self, inputs):
x = self.dense_proj(inputs)
return self.dense_output(x)
class VariationalAutoEncoder(keras.Model):
"""Combines the encoder and decoder into an end-to-end model for training."""
def __init__(
self,
original_dim,
intermediate_dim=64,
latent_dim=32,
name="autoencoder",
**kwargs
):
super(VariationalAutoEncoder, self).__init__(name=name, **kwargs)
self.original_dim = original_dim
self.encoder = Encoder(latent_dim=latent_dim, intermediate_dim=intermediate_dim)
self.decoder = Decoder(original_dim, intermediate_dim=intermediate_dim)
def call(self, inputs):
z_mean, z_log_var, z = self.encoder(inputs)
reconstructed = self.decoder(z)
# Add KL divergence regularization loss.
kl_loss = -0.5 * tf.reduce_mean(
z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1
)
self.add_loss(kl_loss)
return reconstructed
利用这个模型来完成 MINST 训练
original_dim = 784
vae = VariationalAutoEncoder(original_dim, 64, 32)
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
mse_loss_fn = tf.keras.losses.MeanSquaredError()
loss_metric = tf.keras.metrics.Mean()
(x_train, _), _ = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype("float32") / 255
train_dataset = tf.data.Dataset.from_tensor_slices(x_train)
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)
epochs = 2
# Iterate over epochs.
for epoch in range(epochs):
print("Start of epoch %d" % (epoch,))
# Iterate over the batches of the dataset.
for step, x_batch_train in enumerate(train_dataset):
with tf.GradientTape() as tape:
reconstructed = vae(x_batch_train)
# Compute reconstruction loss
loss = mse_loss_fn(x_batch_train, reconstructed)
loss += sum(vae.losses) # Add KLD regularization loss
grads = tape.gradient(loss, vae.trainable_weights)
optimizer.apply_gradients(zip(grads, vae.trainable_weights))
loss_metric(loss)
if step % 100 == 0:
print("step %d: mean loss = %.4f" % (step, loss_metric.result()))
因为VAE 类是 Model 类的子类, 它有内建的训练功能, 所以也可以这样写:
vae = VariationalAutoEncoder(784, 64, 32)
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
vae.compile(optimizer, loss=tf.keras.losses.MeanSquaredError())
vae.fit(x_train, x_train, epochs=2, batch_size=64)
用 Functional API 来实现
上面的例子使用了面向对象(object-oriented) 的方式来完成, 同样的也可以用流程化的变成方式:
original_dim = 784
intermediate_dim = 64
latent_dim = 32
# Define encoder model.
original_inputs = tf.keras.Input(shape=(original_dim,), name="encoder_input")
x = layers.Dense(intermediate_dim, activation="relu")(original_inputs)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()((z_mean, z_log_var))
encoder = tf.keras.Model(inputs=original_inputs, outputs=z, name="encoder")
# Define decoder model.
latent_inputs = tf.keras.Input(shape=(latent_dim,), name="z_sampling")
x = layers.Dense(intermediate_dim, activation="relu")(latent_inputs)
outputs = layers.Dense(original_dim, activation="sigmoid")(x)
decoder = tf.keras.Model(inputs=latent_inputs, outputs=outputs, name="decoder")
# Define VAE model.
outputs = decoder(z)
vae = tf.keras.Model(inputs=original_inputs, outputs=outputs, name="vae")
# Add KL divergence regularization loss.
kl_loss = -0.5 * tf.reduce_mean(z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1)
vae.add_loss(kl_loss)
# Train.
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
vae.compile(optimizer, loss=tf.keras.losses.MeanSquaredError())
vae.fit(x_train, x_train, epochs=3, batch_size=64)
这里也用了 Sampling
, 形式不重要,实战中可以使用混合形式, 最高的目标是达到你的目标。
网友评论