美文网首页
seurat的FoldChange函数

seurat的FoldChange函数

作者: PhageNanoenzyme | 来源:发表于2021-09-18 09:10 被阅读0次
R version 4.0.5 (2021-03-31) -- "Shake and Throw"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> #中文教程链接:https://www.jianshu.com/p/36a4780953f5
> library(dplyr)

载入程辑包:‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union

> library(Seurat)
Attaching SeuratObject
> library(patchwork)
> # Load the PBMC dataset
> pbmc.data <- Read10X(data.dir = "./pbmc3k_filtered_gene_bc_matrices/filtered_gene_bc_matrices/hg19/")
> # Initialize the Seurat object with the raw (non-normalized data).
> pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)
Warning: Feature names cannot have underscores ('_'), replacing with dashes ('-')
> pbmc
An object of class Seurat 
13714 features across 2700 samples within 1 assay 
Active assay: RNA (13714 features, 0 variable features)
> # The [[ operator can add columns to object metadata. This is a great place to stash QC stats
> pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
> # Show QC metrics for the first 5 cells
> head(pbmc@meta.data, 5)
                 orig.ident nCount_RNA nFeature_RNA percent.mt
AAACATACAACCAC-1     pbmc3k       2419          779  3.0177759
AAACATTGAGCTAC-1     pbmc3k       4903         1352  3.7935958
AAACATTGATCAGC-1     pbmc3k       3147         1129  0.8897363
AAACCGTGCTTCCG-1     pbmc3k       2639          960  1.7430845
AAACCGTGTATGCG-1     pbmc3k        980          521  1.2244898
> #Visualize QC metrics as a violin plot
> VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
> # FeatureScatter is typically used to visualize feature-feature relationships, but can be used for anything calculated by the object, i.e. columns in object metadata, PC scores etc.
> plot1 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")
> plot2 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
> plot1 + plot2
> pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
> pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 1e4)
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
> pbmc <- FindVariableFeatures(pbmc, selection.method = 'vst', nfeatures = 2000)
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
> # Identify the 10 most highly variable genes
> top10 <- head(VariableFeatures(pbmc), 10)
> # plot variable features with and without labels
> plot1 <- VariableFeaturePlot(pbmc)
> plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
When using repel, set xnudge and ynudge to 0 for optimal results
> plot1 + plot2#调整窗口大小
Warning messages:
1: Transformation introduced infinite values in continuous x-axis 
2: Transformation introduced infinite values in continuous x-axis 
> all.genes <- rownames(pbmc)
> pbmc <- ScaleData(pbmc, features = all.genes)
Centering and scaling data matrix
  |=======================================================================================| 100%
> set.seed(20210818)
> pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
PC_ 1 
Positive:  CST3, TYROBP, LST1, AIF1, FTL, FTH1, LYZ, FCN1, S100A9, TYMP 
       FCER1G, CFD, LGALS1, S100A8, CTSS, LGALS2, SERPINA1, IFITM3, SPI1, CFP 
       PSAP, IFI30, SAT1, COTL1, S100A11, NPC2, GRN, LGALS3, GSTP1, PYCARD 
Negative:  MALAT1, LTB, IL32, IL7R, CD2, B2M, ACAP1, CD27, STK17A, CTSW 
       CD247, GIMAP5, AQP3, CCL5, SELL, TRAF3IP3, GZMA, MAL, CST7, ITM2A 
       MYC, GIMAP7, HOPX, BEX2, LDLRAP1, GZMK, ETS1, ZAP70, TNFAIP8, RIC3 
PC_ 2 
Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1, HLA-DRA, LINC00926, CD79B, HLA-DRB1, CD74 
       HLA-DMA, HLA-DPB1, HLA-DQA2, CD37, HLA-DRB5, HLA-DMB, HLA-DPA1, FCRLA, HVCN1, LTB 
       BLNK, P2RX5, IGLL5, IRF8, SWAP70, ARHGAP24, FCGR2B, SMIM14, PPP1R14A, C16orf74 
Negative:  NKG7, PRF1, CST7, GZMB, GZMA, FGFBP2, CTSW, GNLY, B2M, SPON2 
       CCL4, GZMH, FCGR3A, CCL5, CD247, XCL2, CLIC3, AKR1C3, SRGN, HOPX 
       TTC38, APMAP, CTSC, S100A4, IGFBP7, ANXA1, ID2, IL32, XCL1, RHOC 
PC_ 3 
Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1, HLA-DPA1, CD74, MS4A1, HLA-DRB1, HLA-DRA 
       HLA-DRB5, HLA-DQA2, TCL1A, LINC00926, HLA-DMB, HLA-DMA, CD37, HVCN1, FCRLA, IRF8 
       PLAC8, BLNK, MALAT1, SMIM14, PLD4, LAT2, IGLL5, P2RX5, SWAP70, FCGR2B 
Negative:  PPBP, PF4, SDPR, SPARC, GNG11, NRGN, GP9, RGS18, TUBB1, CLU 
       HIST1H2AC, AP001189.4, ITGA2B, CD9, TMEM40, PTCRA, CA2, ACRBP, MMD, TREML1 
       NGFRAP1, F13A1, SEPT5, RUFY1, TSC22D1, MPP1, CMTM5, RP11-367G6.3, MYL9, GP1BA 
PC_ 4 
Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1, CD74, HLA-DPB1, HIST1H2AC, PF4, TCL1A 
       SDPR, HLA-DPA1, HLA-DRB1, HLA-DQA2, HLA-DRA, PPBP, LINC00926, GNG11, HLA-DRB5, SPARC 
       GP9, AP001189.4, CA2, PTCRA, CD9, NRGN, RGS18, GZMB, CLU, TUBB1 
Negative:  VIM, IL7R, S100A6, IL32, S100A8, S100A4, GIMAP7, S100A10, S100A9, MAL 
       AQP3, CD2, CD14, FYB, LGALS2, GIMAP4, ANXA1, CD27, FCN1, RBP7 
       LYZ, S100A11, GIMAP5, MS4A6A, S100A12, FOLR3, TRABD2A, AIF1, IL8, IFI6 
PC_ 5 
Positive:  GZMB, NKG7, S100A8, FGFBP2, GNLY, CCL4, CST7, PRF1, GZMA, SPON2 
       GZMH, S100A9, LGALS2, CCL3, CTSW, XCL2, CD14, CLIC3, S100A12, CCL5 
       RBP7, MS4A6A, GSTP1, FOLR3, IGFBP7, TYROBP, TTC38, AKR1C3, XCL1, HOPX 
Negative:  LTB, IL7R, CKB, VIM, MS4A7, AQP3, CYTIP, RP11-290F20.3, SIGLEC10, HMOX1 
       PTGES3, LILRB2, MAL, CD27, HN1, CD2, GDI2, ANXA5, CORO1B, TUBA1B 
       FAM110A, ATP1A1, TRADD, PPA1, CCDC109B, ABRACL, CTD-2006K23.1, WARS, VMO1, FYB 
> # Examine and visualize PCA results a few different ways
> print(pbmc[['pca']], dims = 1:5, nfeatures = 5)
PC_ 1 
Positive:  CST3, TYROBP, LST1, AIF1, FTL 
Negative:  MALAT1, LTB, IL32, IL7R, CD2 
PC_ 2 
Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1 
Negative:  NKG7, PRF1, CST7, GZMB, GZMA 
PC_ 3 
Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1 
Negative:  PPBP, PF4, SDPR, SPARC, GNG11 
PC_ 4 
Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1 
Negative:  VIM, IL7R, S100A6, IL32, S100A8 
PC_ 5 
Positive:  GZMB, NKG7, S100A8, FGFBP2, GNLY 
Negative:  LTB, IL7R, CKB, VIM, MS4A7 
> VizDimLoadings(pbmc, dims = 1:2, reduction = 'pca')
> DimPlot(pbmc, reduction = 'pca')
> DimHeatmap(pbmc, dims = 1, cells = 500, balanced = TRUE)
> DimHeatmap(pbmc, dims = 1:15, cells = 500, balanced = TRUE)
> #pbmc <- JackStraw(pbmc, num.replicate = 100)
> #pbmc <- ScoreJackStraw(pbmc, dims = 1:20)
> ElbowPlot(pbmc)
> pbmc <- FindNeighbors(pbmc, dims = 1:10)
Computing nearest neighbor graph
Computing SNN
> pbmc <- FindClusters(pbmc, resolution = 0.5)
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 2638
Number of edges: 95965

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8723
Number of communities: 9
Elapsed time: 0 seconds
> # Look at cluster IDs of the first 5 cells
> head(Idents(pbmc), 5)
AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1 AAACCGTGTATGCG-1 
               2                3                2                1                6 
Levels: 0 1 2 3 4 5 6 7 8
> pbmc <- RunUMAP(pbmc, dims = 1:10)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
08:48:04 UMAP embedding parameters a = 0.9922 b = 1.112
08:48:04 Read 2638 rows and found 10 numeric columns
08:48:04 Using Annoy for neighbor search, n_neighbors = 30
08:48:04 Building Annoy index with metric = cosine, n_trees = 50
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
08:48:05 Writing NN index file to temp file C:\Users\Nano\AppData\Local\Temp\RtmpeIvHJD\file259c7ddba5e
08:48:05 Searching Annoy index using 1 thread, search_k = 3000
08:48:06 Annoy recall = 100%
08:48:06 Commencing smooth kNN distance calibration using 1 thread
08:48:07 Initializing from normalized Laplacian + noise
08:48:07 Commencing optimization for 500 epochs, with 105124 positive edges
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
08:48:19 Optimization finished
> DimPlot(pbmc, reduction = 'umap',label = TRUE)
> saveRDS(pbmc, file = "./pbmc_tutorial.rds",compress = F)
> save(phe,file = 'pbmc_tutorial.Rdata')  # 是Rdata
Error in save(phe, file = "pbmc_tutorial.Rdata") : 目标对象‘phe’不存在
> save(pbmc,file = 'pbmc_tutorial.Rdata')  # 是Rdata
> # find markers for every cluster compared to all remaining cells, report only the positive ones
> pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
Calculating cluster 0
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s  
Calculating cluster 1
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s  
Calculating cluster 2
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s  
Calculating cluster 3
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s  
Calculating cluster 4
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s  
Calculating cluster 5
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=08s  
Calculating cluster 6
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=06s  
Calculating cluster 7
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=08s  
Calculating cluster 8
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s  
> FoldChange(pbmc)
Error in IdentsToCells(object = object, ident.1 = ident.1, ident.2 = ident.2,  : 
  Please provide ident.1
> FoldChange(pbmc,ident.1 = 1)
                    avg_log2FC pct.1 pct.2
AL627309.1        5.991942e-02 0.013 0.001
AP006222.2        1.081806e-02 0.002 0.001
RP11-206L10.2    -9.997706e-03 0.000 0.002
RP11-206L10.9     1.377193e-02 0.004 0.000
LINC00115         1.661765e-02 0.010 0.006
NOC2L            -2.347717e-01 0.065 0.103
KLHL17            8.565006e-03 0.004 0.003
PLEKHN1           3.039706e-02 0.004 0.002
RP11-54O7.17      2.229769e-02 0.004 0.000
HES4              8.618699e-02 0.073 0.051
RP11-54O7.11     -9.668898e-03 0.000 0.002
ISG15             1.169418e+00 0.694 0.393
AGRN              8.992492e-02 0.013 0.001
C1orf159          1.732418e-02 0.010 0.009
TNFRSF18         -2.569412e-01 0.004 0.042
TNFRSF4          -4.459027e-01 0.004 0.070
SDF4             -1.886270e-01 0.100 0.132
B3GALT6           1.353525e-03 0.027 0.021
FAM132A           8.753051e-03 0.002 0.000
UBE2J2           -1.759542e-01 0.083 0.117
ACAP3            -7.589399e-02 0.015 0.025
PUSL1            -3.293018e-02 0.019 0.023
CPSF3L           -3.660217e-01 0.050 0.081
GLTPD1           -1.083306e-01 0.013 0.032
DVL1              1.609506e-02 0.004 0.001
MXRA8            -1.404046e-02 0.000 0.002
AURKAIP1          3.132754e-01 0.340 0.277
CCNL2             1.685216e-02 0.058 0.052
RP4-758J18.2     -1.449301e-01 0.017 0.041
MRPL20            2.886429e-01 0.329 0.238
ATAD3C           -6.717900e-02 0.000 0.004
ATAD3B           -3.877044e-02 0.006 0.012
ATAD3A           -2.103357e-02 0.017 0.018
SSU72             1.977560e-01 0.390 0.323
AL645728.1       -3.772974e-03 0.010 0.010
C1orf233          3.329228e-02 0.006 0.003
RP11-345P4.9      6.299331e-02 0.021 0.013
MIB2             -3.708821e-01 0.017 0.076
MMP23B           -6.350711e-02 0.000 0.010
CDK11B           -1.864986e-02 0.021 0.023
SLC35E2B         -5.619317e-02 0.010 0.018
CDK11A           -2.663936e-03 0.067 0.059
SLC35E2          -3.089777e-02 0.002 0.007
NADK              3.121756e-01 0.088 0.038
GNB1              3.479070e-01 0.183 0.104
RP1-140A9.1       3.832413e-03 0.002 0.001
TMEM52           -6.961956e-03 0.000 0.001
PRKCZ            -5.944040e-02 0.006 0.013
RP5-892K4.1       2.714462e-02 0.008 0.003
C1orf86           4.425400e-01 0.235 0.176
AL590822.2       -8.080619e-03 0.000 0.001
SKI               4.804997e-02 0.025 0.021
RER1              1.340477e-01 0.288 0.213
PEX10            -2.321032e-02 0.013 0.013
PLCH2            -1.203256e-02 0.000 0.001
PANK4            -7.142484e-02 0.010 0.023
RP3-395M20.12     2.415163e-03 0.067 0.062
TNFRSF14         -2.180262e-01 0.183 0.230
RP3-395M20.9     -3.839743e-02 0.000 0.006
FAM213B           4.848099e-03 0.017 0.014
MMEL1             3.761794e-02 0.010 0.004
TTC34            -9.721445e-03 0.000 0.002
MEGF6            -3.191884e-05 0.002 0.004
TPRG1L            4.391686e-02 0.017 0.019
WRAP73           -8.098833e-02 0.031 0.037
TP73-AS1         -4.447081e-02 0.008 0.013
SMIM1             3.680400e-02 0.010 0.004
LRRC47           -6.618629e-02 0.042 0.044
CEP104            4.098695e-02 0.025 0.023
DFFB             -9.937146e-03 0.010 0.008
C1orf174         -4.609406e-02 0.048 0.054
NPHP4             5.580424e-02 0.010 0.003
KCNAB2            1.312300e-01 0.123 0.091
RPL22            -5.190237e-01 0.725 0.831
RNF207           -2.373453e-02 0.002 0.005
ICMT             -4.027702e-02 0.021 0.026
GPR153           -1.256047e-02 0.000 0.002
ACOT7            -3.774562e-02 0.002 0.010
RP1-202O8.3      -1.587012e-02 0.000 0.002
ESPN             -1.456495e-02 0.000 0.002
TNFRSF25         -4.565410e-01 0.008 0.076
PLEKHG5          -1.861976e-03 0.004 0.004
NOL9             -5.003837e-02 0.013 0.015
ZBTB48            3.789975e-02 0.027 0.024
KLHL21            4.493523e-03 0.019 0.013
PHF13            -1.309725e-02 0.006 0.007
THAP3            -8.388027e-02 0.021 0.032
DNAJC11          -3.029132e-02 0.010 0.017
RP11-312B8.1      1.881996e-02 0.004 0.000
CAMTA1           -4.207547e-02 0.102 0.086
VAMP3             3.297590e-01 0.123 0.062
PER3             -6.999526e-02 0.002 0.011
UTS2             -3.458646e-02 0.000 0.006
TNFRSF9          -3.185832e-03 0.002 0.005
PARK7             3.205536e-01 0.560 0.474
SLC45A1          -6.602073e-03 0.000 0.001
RERE              9.478820e-02 0.054 0.046
RP5-1115A15.1    -1.300274e-03 0.002 0.001
ENO1              2.203026e-01 0.617 0.554
ENO1-AS1         -3.463614e-02 0.002 0.006
CA6              -1.720481e-02 0.000 0.002
SLC2A5            8.127241e-03 0.002 0.001
GPR157            2.541433e-03 0.002 0.001
H6PD              8.400673e-02 0.031 0.016
SPSB1            -2.928534e-02 0.000 0.005
SLC25A33          1.354193e-01 0.050 0.034
TMEM201          -2.085647e-02 0.000 0.003
PIK3CD            1.700481e-01 0.108 0.079
C1orf200          3.385222e-04 0.002 0.002
RP11-558F24.4    -1.482720e-03 0.002 0.002
CLSTN1           -8.705609e-02 0.044 0.057
CTNNBIP1          3.065072e-01 0.129 0.048
LZIC             -4.641315e-02 0.056 0.054
NMNAT1            2.640163e-02 0.013 0.009
RBP7              1.651701e+00 0.312 0.013
UBE4B             5.054159e-02 0.038 0.025
KIF1B             5.734362e-02 0.021 0.007
PGD               1.140026e+00 0.331 0.070
APITD1           -7.468917e-02 0.004 0.014
DFFA              4.658086e-02 0.054 0.040
PEX14            -5.536691e-02 0.013 0.020
CASZ1            -1.839335e-02 0.000 0.003
TARDBP           -1.876865e-01 0.042 0.071
RP4-635E18.8      1.717453e-03 0.002 0.002
SRM              -7.958546e-02 0.098 0.138
EXOSC10          -4.422812e-02 0.027 0.038
MTOR              2.394534e-02 0.017 0.012
UBIAD1           -2.296973e-01 0.015 0.048
FBXO2            -4.535472e-02 0.000 0.006
FBXO44           -2.074842e-01 0.004 0.037
FBXO6             5.551531e-02 0.069 0.052
MAD2L2            7.544205e-03 0.077 0.083
DRAXIN           -2.346166e-03 0.004 0.002
AGTRAP            1.258683e+00 0.415 0.095
MTHFR             1.556204e-01 0.044 0.018
CLCN6            -5.555576e-02 0.006 0.012
NPPA-AS1         -1.381248e-02 0.000 0.001
KIAA2013          2.549525e-01 0.052 0.016
PLOD1             1.085345e-01 0.031 0.006
MFN2              1.709259e-01 0.038 0.021
MIIP              2.122353e-01 0.092 0.054
TNFRSF8           7.903345e-02 0.023 0.010
TNFRSF1B          8.983417e-01 0.262 0.116
VPS13D            3.124422e-02 0.023 0.021
DHRS3            -1.361857e-01 0.004 0.025
PRDM2            -9.055290e-02 0.058 0.068
TMEM51            5.313614e-02 0.013 0.001
RP3-467K16.4     -1.531229e-02 0.000 0.002
EFHD2             8.546119e-01 0.383 0.152
CASP9            -2.934787e-02 0.013 0.014
DNAJC16          -4.550817e-02 0.006 0.011
AGMAT            -1.008681e-01 0.002 0.019
DDI2             -1.181420e-01 0.008 0.013
PLEKHM2           1.996065e-01 0.050 0.008
FBLIM1           -3.097529e-02 0.006 0.011
RP11-169K16.9     2.997338e-02 0.054 0.054
SPEN              6.743284e-02 0.023 0.029
ZBTB17            4.101209e-02 0.019 0.017
ARHGEF19         -4.261470e-02 0.000 0.006
RSG1             -1.856744e-02 0.000 0.003
FBXO42            4.847491e-02 0.035 0.020
SZRD1             4.681319e-02 0.096 0.086
SPATA21           2.303181e-03 0.002 0.001
NECAP2           -2.220942e-01 0.150 0.191
RP4-798A10.2      4.500992e-02 0.008 0.002
RP4-798A10.7     -6.621512e-03 0.000 0.001
RP4-798A10.4     -1.259137e-02 0.000 0.002
NBPF1            -1.843437e-03 0.013 0.015
CROCCP2          -6.018580e-02 0.031 0.051
CROCC             1.585994e-02 0.013 0.008
RP11-108M9.4      1.737063e-01 0.058 0.042
RP11-108M9.6     -6.965478e-02 0.002 0.011
ATP13A2          -1.731202e-02 0.025 0.023
SDHB              8.715809e-01 0.312 0.195
PADI2             3.927035e-02 0.006 0.000
PADI4             1.613264e-01 0.046 0.021
RCC2              2.638353e-01 0.065 0.025
ARHGEF10L         2.274314e-01 0.044 0.004
ALDH4A1           6.237586e-03 0.002 0.001
IFFO2            -1.569966e-02 0.004 0.007
UBR4              4.983854e-01 0.121 0.038
RP1-43E13.2       6.563346e-03 0.006 0.004
EMC1             -3.052703e-02 0.010 0.012
MRTO4            -1.478492e-01 0.031 0.053
AKR7A2            1.495705e-01 0.171 0.125
PQLC2             1.154350e-02 0.013 0.007
CAPZB            -3.942409e-02 0.548 0.563
MINOS1-NBL1      -7.915231e-03 0.000 0.002
MINOS1           -5.579122e-02 0.262 0.264
NBL1             -2.416721e-02 0.000 0.005
TMCO4            -5.559194e-02 0.006 0.013
OTUD3             5.409893e-02 0.010 0.003
UBXN10-AS1       -1.664253e-02 0.000 0.002
UBXN10           -5.432753e-03 0.000 0.001
CAMK2N1          -5.826301e-02 0.000 0.003
MUL1             -7.772366e-03 0.021 0.026
CDA               2.060354e+00 0.544 0.058
PINK1             1.509215e-01 0.046 0.018
PINK1-AS          6.928788e-03 0.010 0.008
DDOST            -4.433892e-02 0.192 0.189
HP1BP3           -3.107734e-01 0.079 0.126
RP5-930J4.4      -9.031179e-03 0.000 0.001
EIF4G3           -2.394044e-02 0.006 0.010
ECE1              6.911880e-02 0.050 0.033
RP3-329E20.2     -1.043293e-02 0.000 0.001
NBPF3            -1.469782e-02 0.002 0.004
ALPL             -8.662576e-03 0.000 0.001
USP48            -2.340587e-02 0.056 0.054
HSPG2            -1.502434e-02 0.000 0.002
RP1-224A6.3       5.655863e-03 0.002 0.001
LINC00339        -8.487187e-02 0.006 0.018
CDC42            -1.262787e-01 0.348 0.380
ZBTB40           -6.017991e-02 0.008 0.018
C1QA             -9.316259e-02 0.017 0.013
C1QC             -2.776394e-02 0.000 0.002
C1QB             -4.048819e-02 0.004 0.007
EPHB2             1.041767e-02 0.004 0.002
KDM1A            -2.375324e-02 0.021 0.022
LUZP1            -7.162162e-02 0.015 0.028
RP5-1057J7.6     -5.205044e-03 0.002 0.001
HNRNPR           -4.392090e-01 0.123 0.225
ZNF436           -4.415926e-02 0.004 0.002
C1orf213         -6.562440e-03 0.000 0.001
TCEA3            -2.154492e-01 0.015 0.045
E2F2              5.249200e-02 0.015 0.007
ID3              -3.890228e-01 0.021 0.076
MDS2             -1.949829e-01 0.000 0.025
RPL11            -3.086715e-01 1.000 0.996
TCEB3            -9.892833e-02 0.019 0.031
RP5-886K2.3      -2.496814e-02 0.008 0.013
PITHD1           -3.952648e-01 0.069 0.151
LYPLA2           -1.281389e-01 0.081 0.086
GALE             -4.432143e-02 0.008 0.014
HMGCL            -1.977504e-01 0.040 0.053
FUCA1             2.498017e-01 0.073 0.029
CNR2             -7.878203e-02 0.000 0.009
PNRC2            -1.236901e-01 0.033 0.057
SRSF10           -1.955860e-01 0.025 0.054
IFNLR1           -2.162172e-02 0.000 0.003
STPG1            -5.691299e-02 0.002 0.012
NIPAL3           -2.999888e-01 0.019 0.069
RCAN3            -4.653407e-01 0.040 0.125
RP4-594I10.3     -5.838712e-02 0.000 0.009
SRRM1            -1.355575e-01 0.171 0.175
CLIC4             3.302778e-02 0.017 0.014
RUNX3            -1.806617e-01 0.067 0.090
SYF2             -2.832320e-02 0.398 0.376
C1orf63          -4.097265e-01 0.127 0.192
RP3-465N24.6      1.645835e-02 0.004 0.002
TMEM50A          -2.494101e-01 0.246 0.271
TMEM57           -1.173546e-01 0.013 0.029
LDLRAP1          -7.981361e-01 0.027 0.149
RP11-70P17.1     -6.897598e-02 0.004 0.011
MAN1C1           -3.951201e-02 0.002 0.011
RP1-187B23.1     -1.891914e-02 0.008 0.009
SEPN1             4.786262e-02 0.023 0.013
RP1-317E23.3     -1.038133e-02 0.000 0.001
MTFR1L            2.371556e-01 0.073 0.046
AL020996.1        1.880819e-03 0.002 0.001
PAQR7             2.437612e-02 0.004 0.000
STMN1            -5.483368e-01 0.017 0.084
PAFAH2           -2.713999e-02 0.010 0.012
PDIK1L           -1.713773e-01 0.002 0.013
ZNF593            1.597591e-01 0.096 0.054
CNKSR1           -9.947208e-03 0.000 0.002
CEP85             3.775482e-03 0.006 0.007
SH3BGRL3          8.641798e-01 0.973 0.833
UBXN11            5.780082e-01 0.181 0.057
CD52             -2.552909e-01 0.833 0.909
AIM1L            -3.596177e-02 0.000 0.005
ZNF683           -1.093657e-01 0.002 0.016
DHDDS             1.345060e-02 0.017 0.018
HMGN2             1.580849e-01 0.102 0.093
RPS6KA1          -8.601323e-02 0.085 0.088
ARID1A            1.526485e-01 0.085 0.061
PIGV              2.109163e-03 0.021 0.017
ZDHHC18           2.254451e-03 0.019 0.015
GPN2             -1.996983e-02 0.027 0.031
GPATCH3          -8.922064e-03 0.017 0.018
NUDC             -2.620021e-01 0.181 0.225
C1orf172         -2.590364e-02 0.000 0.004
TRNP1             2.412450e-03 0.002 0.001
SLC9A1            4.232937e-02 0.021 0.011
WDTC1             3.773947e-02 0.038 0.025
TMEM222          -2.122516e-01 0.029 0.070
SYTL1            -5.817626e-01 0.075 0.190
MAP3K6           -3.771882e-02 0.010 0.017
WASF2             3.188862e-01 0.277 0.178
RP1-159A19.4     -1.776124e-02 0.000 0.004
AHDC1            -1.767365e-02 0.008 0.009
FGR               1.096524e+00 0.502 0.152
IFI6              1.565802e+00 0.773 0.321
FAM76A           -8.631183e-02 0.004 0.014
STX12             1.430702e-01 0.100 0.059
PPP1R8           -2.227218e-01 0.042 0.063
THEMIS2           7.836859e-01 0.256 0.086
RPA2             -7.236961e-01 0.062 0.209
XKR8             -9.824569e-04 0.023 0.029
EYA3             -9.279806e-03 0.010 0.010
PTAFR             6.383363e-01 0.106 0.012
DNAJC8           -3.062794e-01 0.175 0.229
AL353354.2       -2.396709e-03 0.002 0.003
ATPIF1           -3.895030e-01 0.240 0.329
RP5-1092A3.4     -5.030800e-02 0.000 0.007
SESN2             2.035592e-02 0.013 0.009
MED18            -1.332760e-02 0.004 0.007
PHACTR4          -1.388753e-01 0.035 0.038
RCC1             -2.926636e-02 0.017 0.021
TRNAU1AP         -1.297726e-01 0.040 0.056
SNHG12           -2.283764e-01 0.025 0.059
TAF12             4.373150e-02 0.125 0.145
RP11-442N24--B.1  7.580135e-03 0.004 0.001
RNU11            -4.490895e-04 0.002 0.001
GMEB1            -7.863571e-02 0.019 0.034
YTHDF2           -4.035629e-01 0.077 0.137
EPB41            -1.789451e-01 0.042 0.068
TMEM200B         -7.133444e-03 0.000 0.001
SRSF4             2.205702e-02 0.138 0.135
MECR             -2.407613e-02 0.019 0.019
MATN1             6.125155e-03 0.002 0.001
MATN1-AS1        -8.641880e-02 0.000 0.013
LAPTM5            2.888276e-02 0.827 0.785
PUM1              2.588529e-01 0.052 0.029
SNRNP40          -3.139502e-01 0.062 0.133
ZCCHC17          -6.007964e-02 0.075 0.075
SERINC2           1.145346e-01 0.023 0.003
PEF1             -1.221568e-01 0.079 0.108
SPOCD1           -3.372977e-02 0.000 0.001
PTP4A2            2.431195e-02 0.267 0.230
KHDRBS1          -7.032664e-02 0.240 0.246
TMEM39B           5.960061e-02 0.038 0.026
KPNA6             1.517865e-02 0.044 0.040
TXLNA             7.034703e-02 0.021 0.012
 [ reached 'max' / getOption("max.print") -- omitted 13381 rows ]

相关文章

网友评论

      本文标题:seurat的FoldChange函数

      本文链接:https://www.haomeiwen.com/subject/fjuegltx.html