美文网首页
seurat的FoldChange函数

seurat的FoldChange函数

作者: PhageNanoenzyme | 来源:发表于2021-09-18 09:10 被阅读0次
    R version 4.0.5 (2021-03-31) -- "Shake and Throw"
    Copyright (C) 2021 The R Foundation for Statistical Computing
    Platform: x86_64-w64-mingw32/x64 (64-bit)
    
    R is free software and comes with ABSOLUTELY NO WARRANTY.
    You are welcome to redistribute it under certain conditions.
    Type 'license()' or 'licence()' for distribution details.
    
    R is a collaborative project with many contributors.
    Type 'contributors()' for more information and
    'citation()' on how to cite R or R packages in publications.
    
    Type 'demo()' for some demos, 'help()' for on-line help, or
    'help.start()' for an HTML browser interface to help.
    Type 'q()' to quit R.
    
    > #中文教程链接:https://www.jianshu.com/p/36a4780953f5
    > library(dplyr)
    
    载入程辑包:‘dplyr’
    
    The following objects are masked from ‘package:stats’:
    
        filter, lag
    
    The following objects are masked from ‘package:base’:
    
        intersect, setdiff, setequal, union
    
    > library(Seurat)
    Attaching SeuratObject
    > library(patchwork)
    > # Load the PBMC dataset
    > pbmc.data <- Read10X(data.dir = "./pbmc3k_filtered_gene_bc_matrices/filtered_gene_bc_matrices/hg19/")
    > # Initialize the Seurat object with the raw (non-normalized data).
    > pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)
    Warning: Feature names cannot have underscores ('_'), replacing with dashes ('-')
    > pbmc
    An object of class Seurat 
    13714 features across 2700 samples within 1 assay 
    Active assay: RNA (13714 features, 0 variable features)
    > # The [[ operator can add columns to object metadata. This is a great place to stash QC stats
    > pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
    > # Show QC metrics for the first 5 cells
    > head(pbmc@meta.data, 5)
                     orig.ident nCount_RNA nFeature_RNA percent.mt
    AAACATACAACCAC-1     pbmc3k       2419          779  3.0177759
    AAACATTGAGCTAC-1     pbmc3k       4903         1352  3.7935958
    AAACATTGATCAGC-1     pbmc3k       3147         1129  0.8897363
    AAACCGTGCTTCCG-1     pbmc3k       2639          960  1.7430845
    AAACCGTGTATGCG-1     pbmc3k        980          521  1.2244898
    > #Visualize QC metrics as a violin plot
    > VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
    > # FeatureScatter is typically used to visualize feature-feature relationships, but can be used for anything calculated by the object, i.e. columns in object metadata, PC scores etc.
    > plot1 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")
    > plot2 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
    > plot1 + plot2
    > pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
    > pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 1e4)
    Performing log-normalization
    0%   10   20   30   40   50   60   70   80   90   100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    > pbmc <- FindVariableFeatures(pbmc, selection.method = 'vst', nfeatures = 2000)
    Calculating gene variances
    0%   10   20   30   40   50   60   70   80   90   100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    Calculating feature variances of standardized and clipped values
    0%   10   20   30   40   50   60   70   80   90   100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    > # Identify the 10 most highly variable genes
    > top10 <- head(VariableFeatures(pbmc), 10)
    > # plot variable features with and without labels
    > plot1 <- VariableFeaturePlot(pbmc)
    > plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
    When using repel, set xnudge and ynudge to 0 for optimal results
    > plot1 + plot2#调整窗口大小
    Warning messages:
    1: Transformation introduced infinite values in continuous x-axis 
    2: Transformation introduced infinite values in continuous x-axis 
    > all.genes <- rownames(pbmc)
    > pbmc <- ScaleData(pbmc, features = all.genes)
    Centering and scaling data matrix
      |=======================================================================================| 100%
    > set.seed(20210818)
    > pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
    PC_ 1 
    Positive:  CST3, TYROBP, LST1, AIF1, FTL, FTH1, LYZ, FCN1, S100A9, TYMP 
           FCER1G, CFD, LGALS1, S100A8, CTSS, LGALS2, SERPINA1, IFITM3, SPI1, CFP 
           PSAP, IFI30, SAT1, COTL1, S100A11, NPC2, GRN, LGALS3, GSTP1, PYCARD 
    Negative:  MALAT1, LTB, IL32, IL7R, CD2, B2M, ACAP1, CD27, STK17A, CTSW 
           CD247, GIMAP5, AQP3, CCL5, SELL, TRAF3IP3, GZMA, MAL, CST7, ITM2A 
           MYC, GIMAP7, HOPX, BEX2, LDLRAP1, GZMK, ETS1, ZAP70, TNFAIP8, RIC3 
    PC_ 2 
    Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1, HLA-DRA, LINC00926, CD79B, HLA-DRB1, CD74 
           HLA-DMA, HLA-DPB1, HLA-DQA2, CD37, HLA-DRB5, HLA-DMB, HLA-DPA1, FCRLA, HVCN1, LTB 
           BLNK, P2RX5, IGLL5, IRF8, SWAP70, ARHGAP24, FCGR2B, SMIM14, PPP1R14A, C16orf74 
    Negative:  NKG7, PRF1, CST7, GZMB, GZMA, FGFBP2, CTSW, GNLY, B2M, SPON2 
           CCL4, GZMH, FCGR3A, CCL5, CD247, XCL2, CLIC3, AKR1C3, SRGN, HOPX 
           TTC38, APMAP, CTSC, S100A4, IGFBP7, ANXA1, ID2, IL32, XCL1, RHOC 
    PC_ 3 
    Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1, HLA-DPA1, CD74, MS4A1, HLA-DRB1, HLA-DRA 
           HLA-DRB5, HLA-DQA2, TCL1A, LINC00926, HLA-DMB, HLA-DMA, CD37, HVCN1, FCRLA, IRF8 
           PLAC8, BLNK, MALAT1, SMIM14, PLD4, LAT2, IGLL5, P2RX5, SWAP70, FCGR2B 
    Negative:  PPBP, PF4, SDPR, SPARC, GNG11, NRGN, GP9, RGS18, TUBB1, CLU 
           HIST1H2AC, AP001189.4, ITGA2B, CD9, TMEM40, PTCRA, CA2, ACRBP, MMD, TREML1 
           NGFRAP1, F13A1, SEPT5, RUFY1, TSC22D1, MPP1, CMTM5, RP11-367G6.3, MYL9, GP1BA 
    PC_ 4 
    Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1, CD74, HLA-DPB1, HIST1H2AC, PF4, TCL1A 
           SDPR, HLA-DPA1, HLA-DRB1, HLA-DQA2, HLA-DRA, PPBP, LINC00926, GNG11, HLA-DRB5, SPARC 
           GP9, AP001189.4, CA2, PTCRA, CD9, NRGN, RGS18, GZMB, CLU, TUBB1 
    Negative:  VIM, IL7R, S100A6, IL32, S100A8, S100A4, GIMAP7, S100A10, S100A9, MAL 
           AQP3, CD2, CD14, FYB, LGALS2, GIMAP4, ANXA1, CD27, FCN1, RBP7 
           LYZ, S100A11, GIMAP5, MS4A6A, S100A12, FOLR3, TRABD2A, AIF1, IL8, IFI6 
    PC_ 5 
    Positive:  GZMB, NKG7, S100A8, FGFBP2, GNLY, CCL4, CST7, PRF1, GZMA, SPON2 
           GZMH, S100A9, LGALS2, CCL3, CTSW, XCL2, CD14, CLIC3, S100A12, CCL5 
           RBP7, MS4A6A, GSTP1, FOLR3, IGFBP7, TYROBP, TTC38, AKR1C3, XCL1, HOPX 
    Negative:  LTB, IL7R, CKB, VIM, MS4A7, AQP3, CYTIP, RP11-290F20.3, SIGLEC10, HMOX1 
           PTGES3, LILRB2, MAL, CD27, HN1, CD2, GDI2, ANXA5, CORO1B, TUBA1B 
           FAM110A, ATP1A1, TRADD, PPA1, CCDC109B, ABRACL, CTD-2006K23.1, WARS, VMO1, FYB 
    > # Examine and visualize PCA results a few different ways
    > print(pbmc[['pca']], dims = 1:5, nfeatures = 5)
    PC_ 1 
    Positive:  CST3, TYROBP, LST1, AIF1, FTL 
    Negative:  MALAT1, LTB, IL32, IL7R, CD2 
    PC_ 2 
    Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1 
    Negative:  NKG7, PRF1, CST7, GZMB, GZMA 
    PC_ 3 
    Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1 
    Negative:  PPBP, PF4, SDPR, SPARC, GNG11 
    PC_ 4 
    Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1 
    Negative:  VIM, IL7R, S100A6, IL32, S100A8 
    PC_ 5 
    Positive:  GZMB, NKG7, S100A8, FGFBP2, GNLY 
    Negative:  LTB, IL7R, CKB, VIM, MS4A7 
    > VizDimLoadings(pbmc, dims = 1:2, reduction = 'pca')
    > DimPlot(pbmc, reduction = 'pca')
    > DimHeatmap(pbmc, dims = 1, cells = 500, balanced = TRUE)
    > DimHeatmap(pbmc, dims = 1:15, cells = 500, balanced = TRUE)
    > #pbmc <- JackStraw(pbmc, num.replicate = 100)
    > #pbmc <- ScoreJackStraw(pbmc, dims = 1:20)
    > ElbowPlot(pbmc)
    > pbmc <- FindNeighbors(pbmc, dims = 1:10)
    Computing nearest neighbor graph
    Computing SNN
    > pbmc <- FindClusters(pbmc, resolution = 0.5)
    Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
    
    Number of nodes: 2638
    Number of edges: 95965
    
    Running Louvain algorithm...
    0%   10   20   30   40   50   60   70   80   90   100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    Maximum modularity in 10 random starts: 0.8723
    Number of communities: 9
    Elapsed time: 0 seconds
    > # Look at cluster IDs of the first 5 cells
    > head(Idents(pbmc), 5)
    AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1 AAACCGTGTATGCG-1 
                   2                3                2                1                6 
    Levels: 0 1 2 3 4 5 6 7 8
    > pbmc <- RunUMAP(pbmc, dims = 1:10)
    Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
    To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
    This message will be shown once per session
    08:48:04 UMAP embedding parameters a = 0.9922 b = 1.112
    08:48:04 Read 2638 rows and found 10 numeric columns
    08:48:04 Using Annoy for neighbor search, n_neighbors = 30
    08:48:04 Building Annoy index with metric = cosine, n_trees = 50
    0%   10   20   30   40   50   60   70   80   90   100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    08:48:05 Writing NN index file to temp file C:\Users\Nano\AppData\Local\Temp\RtmpeIvHJD\file259c7ddba5e
    08:48:05 Searching Annoy index using 1 thread, search_k = 3000
    08:48:06 Annoy recall = 100%
    08:48:06 Commencing smooth kNN distance calibration using 1 thread
    08:48:07 Initializing from normalized Laplacian + noise
    08:48:07 Commencing optimization for 500 epochs, with 105124 positive edges
    0%   10   20   30   40   50   60   70   80   90   100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    08:48:19 Optimization finished
    > DimPlot(pbmc, reduction = 'umap',label = TRUE)
    > saveRDS(pbmc, file = "./pbmc_tutorial.rds",compress = F)
    > save(phe,file = 'pbmc_tutorial.Rdata')  # 是Rdata
    Error in save(phe, file = "pbmc_tutorial.Rdata") : 目标对象‘phe’不存在
    > save(pbmc,file = 'pbmc_tutorial.Rdata')  # 是Rdata
    > # find markers for every cluster compared to all remaining cells, report only the positive ones
    > pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
    Calculating cluster 0
      |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s  
    Calculating cluster 1
      |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s  
    Calculating cluster 2
      |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s  
    Calculating cluster 3
      |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s  
    Calculating cluster 4
      |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s  
    Calculating cluster 5
      |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=08s  
    Calculating cluster 6
      |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=06s  
    Calculating cluster 7
      |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=08s  
    Calculating cluster 8
      |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s  
    > FoldChange(pbmc)
    Error in IdentsToCells(object = object, ident.1 = ident.1, ident.2 = ident.2,  : 
      Please provide ident.1
    > FoldChange(pbmc,ident.1 = 1)
                        avg_log2FC pct.1 pct.2
    AL627309.1        5.991942e-02 0.013 0.001
    AP006222.2        1.081806e-02 0.002 0.001
    RP11-206L10.2    -9.997706e-03 0.000 0.002
    RP11-206L10.9     1.377193e-02 0.004 0.000
    LINC00115         1.661765e-02 0.010 0.006
    NOC2L            -2.347717e-01 0.065 0.103
    KLHL17            8.565006e-03 0.004 0.003
    PLEKHN1           3.039706e-02 0.004 0.002
    RP11-54O7.17      2.229769e-02 0.004 0.000
    HES4              8.618699e-02 0.073 0.051
    RP11-54O7.11     -9.668898e-03 0.000 0.002
    ISG15             1.169418e+00 0.694 0.393
    AGRN              8.992492e-02 0.013 0.001
    C1orf159          1.732418e-02 0.010 0.009
    TNFRSF18         -2.569412e-01 0.004 0.042
    TNFRSF4          -4.459027e-01 0.004 0.070
    SDF4             -1.886270e-01 0.100 0.132
    B3GALT6           1.353525e-03 0.027 0.021
    FAM132A           8.753051e-03 0.002 0.000
    UBE2J2           -1.759542e-01 0.083 0.117
    ACAP3            -7.589399e-02 0.015 0.025
    PUSL1            -3.293018e-02 0.019 0.023
    CPSF3L           -3.660217e-01 0.050 0.081
    GLTPD1           -1.083306e-01 0.013 0.032
    DVL1              1.609506e-02 0.004 0.001
    MXRA8            -1.404046e-02 0.000 0.002
    AURKAIP1          3.132754e-01 0.340 0.277
    CCNL2             1.685216e-02 0.058 0.052
    RP4-758J18.2     -1.449301e-01 0.017 0.041
    MRPL20            2.886429e-01 0.329 0.238
    ATAD3C           -6.717900e-02 0.000 0.004
    ATAD3B           -3.877044e-02 0.006 0.012
    ATAD3A           -2.103357e-02 0.017 0.018
    SSU72             1.977560e-01 0.390 0.323
    AL645728.1       -3.772974e-03 0.010 0.010
    C1orf233          3.329228e-02 0.006 0.003
    RP11-345P4.9      6.299331e-02 0.021 0.013
    MIB2             -3.708821e-01 0.017 0.076
    MMP23B           -6.350711e-02 0.000 0.010
    CDK11B           -1.864986e-02 0.021 0.023
    SLC35E2B         -5.619317e-02 0.010 0.018
    CDK11A           -2.663936e-03 0.067 0.059
    SLC35E2          -3.089777e-02 0.002 0.007
    NADK              3.121756e-01 0.088 0.038
    GNB1              3.479070e-01 0.183 0.104
    RP1-140A9.1       3.832413e-03 0.002 0.001
    TMEM52           -6.961956e-03 0.000 0.001
    PRKCZ            -5.944040e-02 0.006 0.013
    RP5-892K4.1       2.714462e-02 0.008 0.003
    C1orf86           4.425400e-01 0.235 0.176
    AL590822.2       -8.080619e-03 0.000 0.001
    SKI               4.804997e-02 0.025 0.021
    RER1              1.340477e-01 0.288 0.213
    PEX10            -2.321032e-02 0.013 0.013
    PLCH2            -1.203256e-02 0.000 0.001
    PANK4            -7.142484e-02 0.010 0.023
    RP3-395M20.12     2.415163e-03 0.067 0.062
    TNFRSF14         -2.180262e-01 0.183 0.230
    RP3-395M20.9     -3.839743e-02 0.000 0.006
    FAM213B           4.848099e-03 0.017 0.014
    MMEL1             3.761794e-02 0.010 0.004
    TTC34            -9.721445e-03 0.000 0.002
    MEGF6            -3.191884e-05 0.002 0.004
    TPRG1L            4.391686e-02 0.017 0.019
    WRAP73           -8.098833e-02 0.031 0.037
    TP73-AS1         -4.447081e-02 0.008 0.013
    SMIM1             3.680400e-02 0.010 0.004
    LRRC47           -6.618629e-02 0.042 0.044
    CEP104            4.098695e-02 0.025 0.023
    DFFB             -9.937146e-03 0.010 0.008
    C1orf174         -4.609406e-02 0.048 0.054
    NPHP4             5.580424e-02 0.010 0.003
    KCNAB2            1.312300e-01 0.123 0.091
    RPL22            -5.190237e-01 0.725 0.831
    RNF207           -2.373453e-02 0.002 0.005
    ICMT             -4.027702e-02 0.021 0.026
    GPR153           -1.256047e-02 0.000 0.002
    ACOT7            -3.774562e-02 0.002 0.010
    RP1-202O8.3      -1.587012e-02 0.000 0.002
    ESPN             -1.456495e-02 0.000 0.002
    TNFRSF25         -4.565410e-01 0.008 0.076
    PLEKHG5          -1.861976e-03 0.004 0.004
    NOL9             -5.003837e-02 0.013 0.015
    ZBTB48            3.789975e-02 0.027 0.024
    KLHL21            4.493523e-03 0.019 0.013
    PHF13            -1.309725e-02 0.006 0.007
    THAP3            -8.388027e-02 0.021 0.032
    DNAJC11          -3.029132e-02 0.010 0.017
    RP11-312B8.1      1.881996e-02 0.004 0.000
    CAMTA1           -4.207547e-02 0.102 0.086
    VAMP3             3.297590e-01 0.123 0.062
    PER3             -6.999526e-02 0.002 0.011
    UTS2             -3.458646e-02 0.000 0.006
    TNFRSF9          -3.185832e-03 0.002 0.005
    PARK7             3.205536e-01 0.560 0.474
    SLC45A1          -6.602073e-03 0.000 0.001
    RERE              9.478820e-02 0.054 0.046
    RP5-1115A15.1    -1.300274e-03 0.002 0.001
    ENO1              2.203026e-01 0.617 0.554
    ENO1-AS1         -3.463614e-02 0.002 0.006
    CA6              -1.720481e-02 0.000 0.002
    SLC2A5            8.127241e-03 0.002 0.001
    GPR157            2.541433e-03 0.002 0.001
    H6PD              8.400673e-02 0.031 0.016
    SPSB1            -2.928534e-02 0.000 0.005
    SLC25A33          1.354193e-01 0.050 0.034
    TMEM201          -2.085647e-02 0.000 0.003
    PIK3CD            1.700481e-01 0.108 0.079
    C1orf200          3.385222e-04 0.002 0.002
    RP11-558F24.4    -1.482720e-03 0.002 0.002
    CLSTN1           -8.705609e-02 0.044 0.057
    CTNNBIP1          3.065072e-01 0.129 0.048
    LZIC             -4.641315e-02 0.056 0.054
    NMNAT1            2.640163e-02 0.013 0.009
    RBP7              1.651701e+00 0.312 0.013
    UBE4B             5.054159e-02 0.038 0.025
    KIF1B             5.734362e-02 0.021 0.007
    PGD               1.140026e+00 0.331 0.070
    APITD1           -7.468917e-02 0.004 0.014
    DFFA              4.658086e-02 0.054 0.040
    PEX14            -5.536691e-02 0.013 0.020
    CASZ1            -1.839335e-02 0.000 0.003
    TARDBP           -1.876865e-01 0.042 0.071
    RP4-635E18.8      1.717453e-03 0.002 0.002
    SRM              -7.958546e-02 0.098 0.138
    EXOSC10          -4.422812e-02 0.027 0.038
    MTOR              2.394534e-02 0.017 0.012
    UBIAD1           -2.296973e-01 0.015 0.048
    FBXO2            -4.535472e-02 0.000 0.006
    FBXO44           -2.074842e-01 0.004 0.037
    FBXO6             5.551531e-02 0.069 0.052
    MAD2L2            7.544205e-03 0.077 0.083
    DRAXIN           -2.346166e-03 0.004 0.002
    AGTRAP            1.258683e+00 0.415 0.095
    MTHFR             1.556204e-01 0.044 0.018
    CLCN6            -5.555576e-02 0.006 0.012
    NPPA-AS1         -1.381248e-02 0.000 0.001
    KIAA2013          2.549525e-01 0.052 0.016
    PLOD1             1.085345e-01 0.031 0.006
    MFN2              1.709259e-01 0.038 0.021
    MIIP              2.122353e-01 0.092 0.054
    TNFRSF8           7.903345e-02 0.023 0.010
    TNFRSF1B          8.983417e-01 0.262 0.116
    VPS13D            3.124422e-02 0.023 0.021
    DHRS3            -1.361857e-01 0.004 0.025
    PRDM2            -9.055290e-02 0.058 0.068
    TMEM51            5.313614e-02 0.013 0.001
    RP3-467K16.4     -1.531229e-02 0.000 0.002
    EFHD2             8.546119e-01 0.383 0.152
    CASP9            -2.934787e-02 0.013 0.014
    DNAJC16          -4.550817e-02 0.006 0.011
    AGMAT            -1.008681e-01 0.002 0.019
    DDI2             -1.181420e-01 0.008 0.013
    PLEKHM2           1.996065e-01 0.050 0.008
    FBLIM1           -3.097529e-02 0.006 0.011
    RP11-169K16.9     2.997338e-02 0.054 0.054
    SPEN              6.743284e-02 0.023 0.029
    ZBTB17            4.101209e-02 0.019 0.017
    ARHGEF19         -4.261470e-02 0.000 0.006
    RSG1             -1.856744e-02 0.000 0.003
    FBXO42            4.847491e-02 0.035 0.020
    SZRD1             4.681319e-02 0.096 0.086
    SPATA21           2.303181e-03 0.002 0.001
    NECAP2           -2.220942e-01 0.150 0.191
    RP4-798A10.2      4.500992e-02 0.008 0.002
    RP4-798A10.7     -6.621512e-03 0.000 0.001
    RP4-798A10.4     -1.259137e-02 0.000 0.002
    NBPF1            -1.843437e-03 0.013 0.015
    CROCCP2          -6.018580e-02 0.031 0.051
    CROCC             1.585994e-02 0.013 0.008
    RP11-108M9.4      1.737063e-01 0.058 0.042
    RP11-108M9.6     -6.965478e-02 0.002 0.011
    ATP13A2          -1.731202e-02 0.025 0.023
    SDHB              8.715809e-01 0.312 0.195
    PADI2             3.927035e-02 0.006 0.000
    PADI4             1.613264e-01 0.046 0.021
    RCC2              2.638353e-01 0.065 0.025
    ARHGEF10L         2.274314e-01 0.044 0.004
    ALDH4A1           6.237586e-03 0.002 0.001
    IFFO2            -1.569966e-02 0.004 0.007
    UBR4              4.983854e-01 0.121 0.038
    RP1-43E13.2       6.563346e-03 0.006 0.004
    EMC1             -3.052703e-02 0.010 0.012
    MRTO4            -1.478492e-01 0.031 0.053
    AKR7A2            1.495705e-01 0.171 0.125
    PQLC2             1.154350e-02 0.013 0.007
    CAPZB            -3.942409e-02 0.548 0.563
    MINOS1-NBL1      -7.915231e-03 0.000 0.002
    MINOS1           -5.579122e-02 0.262 0.264
    NBL1             -2.416721e-02 0.000 0.005
    TMCO4            -5.559194e-02 0.006 0.013
    OTUD3             5.409893e-02 0.010 0.003
    UBXN10-AS1       -1.664253e-02 0.000 0.002
    UBXN10           -5.432753e-03 0.000 0.001
    CAMK2N1          -5.826301e-02 0.000 0.003
    MUL1             -7.772366e-03 0.021 0.026
    CDA               2.060354e+00 0.544 0.058
    PINK1             1.509215e-01 0.046 0.018
    PINK1-AS          6.928788e-03 0.010 0.008
    DDOST            -4.433892e-02 0.192 0.189
    HP1BP3           -3.107734e-01 0.079 0.126
    RP5-930J4.4      -9.031179e-03 0.000 0.001
    EIF4G3           -2.394044e-02 0.006 0.010
    ECE1              6.911880e-02 0.050 0.033
    RP3-329E20.2     -1.043293e-02 0.000 0.001
    NBPF3            -1.469782e-02 0.002 0.004
    ALPL             -8.662576e-03 0.000 0.001
    USP48            -2.340587e-02 0.056 0.054
    HSPG2            -1.502434e-02 0.000 0.002
    RP1-224A6.3       5.655863e-03 0.002 0.001
    LINC00339        -8.487187e-02 0.006 0.018
    CDC42            -1.262787e-01 0.348 0.380
    ZBTB40           -6.017991e-02 0.008 0.018
    C1QA             -9.316259e-02 0.017 0.013
    C1QC             -2.776394e-02 0.000 0.002
    C1QB             -4.048819e-02 0.004 0.007
    EPHB2             1.041767e-02 0.004 0.002
    KDM1A            -2.375324e-02 0.021 0.022
    LUZP1            -7.162162e-02 0.015 0.028
    RP5-1057J7.6     -5.205044e-03 0.002 0.001
    HNRNPR           -4.392090e-01 0.123 0.225
    ZNF436           -4.415926e-02 0.004 0.002
    C1orf213         -6.562440e-03 0.000 0.001
    TCEA3            -2.154492e-01 0.015 0.045
    E2F2              5.249200e-02 0.015 0.007
    ID3              -3.890228e-01 0.021 0.076
    MDS2             -1.949829e-01 0.000 0.025
    RPL11            -3.086715e-01 1.000 0.996
    TCEB3            -9.892833e-02 0.019 0.031
    RP5-886K2.3      -2.496814e-02 0.008 0.013
    PITHD1           -3.952648e-01 0.069 0.151
    LYPLA2           -1.281389e-01 0.081 0.086
    GALE             -4.432143e-02 0.008 0.014
    HMGCL            -1.977504e-01 0.040 0.053
    FUCA1             2.498017e-01 0.073 0.029
    CNR2             -7.878203e-02 0.000 0.009
    PNRC2            -1.236901e-01 0.033 0.057
    SRSF10           -1.955860e-01 0.025 0.054
    IFNLR1           -2.162172e-02 0.000 0.003
    STPG1            -5.691299e-02 0.002 0.012
    NIPAL3           -2.999888e-01 0.019 0.069
    RCAN3            -4.653407e-01 0.040 0.125
    RP4-594I10.3     -5.838712e-02 0.000 0.009
    SRRM1            -1.355575e-01 0.171 0.175
    CLIC4             3.302778e-02 0.017 0.014
    RUNX3            -1.806617e-01 0.067 0.090
    SYF2             -2.832320e-02 0.398 0.376
    C1orf63          -4.097265e-01 0.127 0.192
    RP3-465N24.6      1.645835e-02 0.004 0.002
    TMEM50A          -2.494101e-01 0.246 0.271
    TMEM57           -1.173546e-01 0.013 0.029
    LDLRAP1          -7.981361e-01 0.027 0.149
    RP11-70P17.1     -6.897598e-02 0.004 0.011
    MAN1C1           -3.951201e-02 0.002 0.011
    RP1-187B23.1     -1.891914e-02 0.008 0.009
    SEPN1             4.786262e-02 0.023 0.013
    RP1-317E23.3     -1.038133e-02 0.000 0.001
    MTFR1L            2.371556e-01 0.073 0.046
    AL020996.1        1.880819e-03 0.002 0.001
    PAQR7             2.437612e-02 0.004 0.000
    STMN1            -5.483368e-01 0.017 0.084
    PAFAH2           -2.713999e-02 0.010 0.012
    PDIK1L           -1.713773e-01 0.002 0.013
    ZNF593            1.597591e-01 0.096 0.054
    CNKSR1           -9.947208e-03 0.000 0.002
    CEP85             3.775482e-03 0.006 0.007
    SH3BGRL3          8.641798e-01 0.973 0.833
    UBXN11            5.780082e-01 0.181 0.057
    CD52             -2.552909e-01 0.833 0.909
    AIM1L            -3.596177e-02 0.000 0.005
    ZNF683           -1.093657e-01 0.002 0.016
    DHDDS             1.345060e-02 0.017 0.018
    HMGN2             1.580849e-01 0.102 0.093
    RPS6KA1          -8.601323e-02 0.085 0.088
    ARID1A            1.526485e-01 0.085 0.061
    PIGV              2.109163e-03 0.021 0.017
    ZDHHC18           2.254451e-03 0.019 0.015
    GPN2             -1.996983e-02 0.027 0.031
    GPATCH3          -8.922064e-03 0.017 0.018
    NUDC             -2.620021e-01 0.181 0.225
    C1orf172         -2.590364e-02 0.000 0.004
    TRNP1             2.412450e-03 0.002 0.001
    SLC9A1            4.232937e-02 0.021 0.011
    WDTC1             3.773947e-02 0.038 0.025
    TMEM222          -2.122516e-01 0.029 0.070
    SYTL1            -5.817626e-01 0.075 0.190
    MAP3K6           -3.771882e-02 0.010 0.017
    WASF2             3.188862e-01 0.277 0.178
    RP1-159A19.4     -1.776124e-02 0.000 0.004
    AHDC1            -1.767365e-02 0.008 0.009
    FGR               1.096524e+00 0.502 0.152
    IFI6              1.565802e+00 0.773 0.321
    FAM76A           -8.631183e-02 0.004 0.014
    STX12             1.430702e-01 0.100 0.059
    PPP1R8           -2.227218e-01 0.042 0.063
    THEMIS2           7.836859e-01 0.256 0.086
    RPA2             -7.236961e-01 0.062 0.209
    XKR8             -9.824569e-04 0.023 0.029
    EYA3             -9.279806e-03 0.010 0.010
    PTAFR             6.383363e-01 0.106 0.012
    DNAJC8           -3.062794e-01 0.175 0.229
    AL353354.2       -2.396709e-03 0.002 0.003
    ATPIF1           -3.895030e-01 0.240 0.329
    RP5-1092A3.4     -5.030800e-02 0.000 0.007
    SESN2             2.035592e-02 0.013 0.009
    MED18            -1.332760e-02 0.004 0.007
    PHACTR4          -1.388753e-01 0.035 0.038
    RCC1             -2.926636e-02 0.017 0.021
    TRNAU1AP         -1.297726e-01 0.040 0.056
    SNHG12           -2.283764e-01 0.025 0.059
    TAF12             4.373150e-02 0.125 0.145
    RP11-442N24--B.1  7.580135e-03 0.004 0.001
    RNU11            -4.490895e-04 0.002 0.001
    GMEB1            -7.863571e-02 0.019 0.034
    YTHDF2           -4.035629e-01 0.077 0.137
    EPB41            -1.789451e-01 0.042 0.068
    TMEM200B         -7.133444e-03 0.000 0.001
    SRSF4             2.205702e-02 0.138 0.135
    MECR             -2.407613e-02 0.019 0.019
    MATN1             6.125155e-03 0.002 0.001
    MATN1-AS1        -8.641880e-02 0.000 0.013
    LAPTM5            2.888276e-02 0.827 0.785
    PUM1              2.588529e-01 0.052 0.029
    SNRNP40          -3.139502e-01 0.062 0.133
    ZCCHC17          -6.007964e-02 0.075 0.075
    SERINC2           1.145346e-01 0.023 0.003
    PEF1             -1.221568e-01 0.079 0.108
    SPOCD1           -3.372977e-02 0.000 0.001
    PTP4A2            2.431195e-02 0.267 0.230
    KHDRBS1          -7.032664e-02 0.240 0.246
    TMEM39B           5.960061e-02 0.038 0.026
    KPNA6             1.517865e-02 0.044 0.040
    TXLNA             7.034703e-02 0.021 0.012
     [ reached 'max' / getOption("max.print") -- omitted 13381 rows ]
    

    相关文章

      网友评论

          本文标题:seurat的FoldChange函数

          本文链接:https://www.haomeiwen.com/subject/fjuegltx.html