美文网首页
Lock的使用

Lock的使用

作者: 小和尚恋红尘 | 来源:发表于2018-08-17 09:53 被阅读0次

    上一篇我们讲解了synchronized的使用,用它就可以满足数据的同步,但是为什么有时我还是会使用Lock呢?因此在这里我们不得不说说synchronized的不足之处,例如当获取锁的线程执行完要释放锁时,由于某些原因该线程被阻塞了,那么此时并没有将获取的锁释放掉,别的线程也就一直等着锁的释放,这样就很影响程序的执行效率。要解决这个问题,只要让等待的线程不无限期的等待下去就可以了,Lock就完全可以解决这样的问题。

    Lock类的使用:
    public interface Lock {
        void lock();
        void lockInterruptibly() throws InterruptedException;
        boolean tryLock();
        boolean tryLock(long var1, TimeUnit var3) throws InterruptedException;
        void unlock();
        Condition newCondition();
    }
    

    它是个接口类,有6个方法,前面4个就是用来获取锁的,第5个用来释放锁的,第6个用来设置等待和通知;那么下面我们具体操作下这些方法的使用。

    lock()的使用
        private Lock lock = new ReentrantLock();
        public void testLock(String name) {
            lock.lock();
            System.out.println(Thread.currentThread().getName() + ",Request Lock...");
            try {
                for (int i = 0; i < 100; i++) {
                    y++;
                    System.out.println(name + "-->CurrThread:" + Thread.currentThread().getName() + " y=" + y);
                }
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
                System.out.println(Thread.currentThread().getName() + ",Release Lock ...");
            }
        }
    

    ReentrantLock类实现了接口Lock,新增了一些方法;Lock自己加锁,用完后自己在释放掉锁;如果加锁的程序在运行过程中发生异常,也不会释放锁,那么就需要我们自己进行处理了,所以我们在使用Lock时会将其放入try{}catch{}finally{}中,将释放锁的操作放入finally中。
    传入同一实例对象,在两个线程中调用此方法,运行,结果为:

    pool-4-thread-1,Request Lock...
    TempRunnable->testLock-->CurrThread:pool-4-thread-1 y=1
    TempRunnable->testLock-->CurrThread:pool-4-thread-1 y=2
    TempRunnable->testLock-->CurrThread:pool-4-thread-1 y=3
    pool-4-thread-1,Release Lock...
    pool-4-thread-1,Request Lock...
    Count Instance 1:-->CurrThread:pool-4-thread-1 y=4
    Count Instance 1:-->CurrThread:pool-4-thread-1 y=5
    Count Instance 1:-->CurrThread:pool-4-thread-1 y=6
    pool-4-thread-1,Release Lock...
    

    从结果上就可以看出,当释放完锁后另一线程才开始申请锁,运行。

    tryLock()方法的使用

    tryLock()方法具有返回值,得到锁返回true,否则返回false, 看代码:

        public void tryLock(String name) {
            if (lockTry.tryLock()) {
                System.out.println(Thread.currentThread().getName() + ",Request Lock success...");
                try {
                    for (int i = 0; i < 3; i++) {
                        y++;
                        System.out.println(name + "-->CurrThread:" + Thread.currentThread().getName() + " y=" + y);
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    System.out.println(Thread.currentThread().getName() + ",Release Lock ...");
                }
            } else {
                System.out.println(Thread.currentThread().getName() + ",Request Lock failed...");
            }
        }
    

    传入同一实例对象,在两个线程中调用此方法,运行结果为:

    Thread-1,Request Lock success...
    Thread-0,Request Lock failed...
    Count Instance 1:-->CurrThread:Thread-1 y=1
    Count Instance 1:-->CurrThread:Thread-1 y=2
    Count Instance 1:-->CurrThread:Thread-1 y=3
    Thread-1,Release Lock ...
    

    线程1申请锁成功,线程0申请锁失败了,此时他并没有继续在等待线程1的执行完成。

    tryLock(long l, TimeUnit t)方法的使用

    tryLock(long l, TimeUnit t)第一个参数表示要等待的时间,第二个参数表示时间单位。
    更改上面的方法,如下:

        public void tryLock(String name) {
            try {
                if (lockTry.tryLock(2000, TimeUnit.MILLISECONDS)) {
                    System.out.println(Thread.currentThread().getName() + ",Request Lock success...");
    
                    for (int i = 0; i < 3; i++) {
                        y++;
                        System.out.println(name + "-->CurrThread:" + Thread.currentThread().getName() + " y=" + y);
                    }
                } else {
                    System.out.println(Thread.currentThread().getName() + ",Request Lock failed...");
                }
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                lockTry.unlock();
                System.out.println(Thread.currentThread().getName() + ",Release Lock ...");
            }
        }
    

    传入同一实例对象,在两个线程中调用此方法,运行结果为:

    Thread-1,Request Lock success...
    Count Instance 1:-->CurrThread:Thread-1 y=1
    Count Instance 1:-->CurrThread:Thread-1 y=2
    Count Instance 1:-->CurrThread:Thread-1 y=3
    Thread-1,Release Lock ...
    Thread-0,Request Lock success...
    TempRunnable->TryLock-->CurrThread:Thread-0 y=4
    TempRunnable->TryLock-->CurrThread:Thread-0 y=5
    TempRunnable->TryLock-->CurrThread:Thread-0 y=6
    Thread-0,Release Lock ...
    

    重新设置时间tryLock(1, TimeUnit.MICROSECONDS)之后,传入同一实例对象,在两个线程中调用此方法,运行结果为:

    Thread-1,Request Lock success...
    Thread-0,Request Lock failed...
    Count Instance 1:-->CurrThread:Thread-1 y=1
    Count Instance 1:-->CurrThread:Thread-1 y=2
    Count Instance 1:-->CurrThread:Thread-1 y=3
    Thread-1,Release Lock ...
    

    一个线程在获取到锁之后,另一线程在获取的话肯定就失败了,但是这里设置了时间之后,在获取不到线程的时候就进行等待设定的时间之后在进行获取,获取到了就返回true,获取不到或者中途线程中断了就返回false

    lockInterruptibly()的使用

    lockInterruptibly()通过这个方法去获取锁时,如果线程 正在等待获取锁,则这个线程能够 响应中断,即中断线程的等待状态。看代码:

        public void interrupt(String name) throws InterruptedException {
            lockTry.lockInterruptibly();
            try {
                for (int i = 0; i < 1000; i++) {
                    y++;
                    System.out.println(name + "-->CurrThread:" + Thread.currentThread().getName() + " y=" + y);
                }
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                lockTry.unlock();
                System.out.println(Thread.currentThread().getName() + ",Release Lock ...");
            }
        }
    

    生成一个线程类TestRunnable,在里面调用interrupt方法,并处理的异常,代码为:

    public class TestRunnable implements Runnable {
        private Count count;
    
        public TestRunnable(Count count) {
            this.count = count;
        }
    
        @Override
        public void run() {
            try {
                count.interrupt(count.getName());
            } catch (InterruptedException e) {
                e.printStackTrace();
                System.out.println(Thread.currentThread().getName() + ",Request Lock Interrupted...");
            }
        }
    }
    

    设置中断线程:

            Count count1 = new Count("Count Instance 1:");
            Thread thread1 = new Thread(new TestRunnable(count1));
            Thread thread2 = new Thread(new TestRunnable(count1));
            thread1.start();
            thread2.start();
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            thread2.interrupt();
    

    上面代码设置的是休眠10毫秒后,中断thread2;运行代码,看看结果:

    MainThread:main started...
    TempRunnable->Interrupt-->CurrThread:Thread-0 y=1
    ......
    java.lang.InterruptedException
        at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchronizer.java:898)
    ......
        at java.lang.Thread.run(Thread.java:745)
    ......
    TempRunnable->Interrupt-->CurrThread:Thread-0 y=507
    Thread-1,Request Lock Interrupted...
    ......
    TempRunnable->Interrupt-->CurrThread:Thread-0 y=1000
    Thread-0,Release Lock ...
    

    从结果看,10毫秒后,我们中断了正在等待锁的线程thread2,这也说明线程运行时间超出了10毫秒,如果小于10毫秒,那么线程不会被中断,线程thread2会获得锁,并将代码执行完成。
    我们在写interrupt方法时,我们将lockTry.lockInterruptibly();写在了try{}catch{}之外,这样异常就从方法抛出,代码为:public void interrupt(String name) throws InterruptedException {};那么我们为什么不把lockTry.lockInterruptibly();写在了try{}catch{}之内呢?我们用代码验证下,将方法更改为:

        public void interrupt(String name) {
            try {
                lockTry.lockInterruptibly();
                for (int i = 0; i < 1000; i++) {
                    y++;
                    System.out.println(name + "-->CurrThread:" + Thread.currentThread().getName() + " y=" + y);
                }
            } catch (Exception e) {
                e.printStackTrace();
                System.out.println(Thread.currentThread().getName() + ",Request Lock Interrupted...");
            } finally {
                lockTry.unlock();
                System.out.println(Thread.currentThread().getName() + ",Release Lock ...");
            }
        }
    

    运行,结果为:

    MainThread:main started...
    TempRunnable->Interrupt-->CurrThread:Thread-0 y=1
    ......
    Exception in thread "Thread-1" java.lang.IllegalMonitorStateException
        at java.util.concurrent.locks.ReentrantLock$Sync.tryRelease(ReentrantLock.java:151)
    ......
        at java.lang.Thread.run(Thread.java:745)
    ......
    TempRunnable->Interrupt-->CurrThread:Thread-0 y=507
    Thread-1,Request Lock Interrupted...
    ......
    TempRunnable->Interrupt-->CurrThread:Thread-0 y=1000
    Thread-0,Release Lock ...
    

    结果中抛出了异常"Thread-1" IllegalMonitorStateException,它是"Thread-1"抛出来的,但不是中断异常。当线程1在等待锁的过程中,10毫秒后进行了线程中断,执行完成后就会去继续执行finally中的解锁操作,而线程1并没有获取到锁,这样就造成了异常。

    因此,对于方法void lockInterruptibly() throws InterruptedException;boolean tryLock(long var1, TimeUnit var3) throws InterruptedException;都应该将调用语句放在try{}catch{}之外。
    公平锁的使用

    公平锁即尽量以请求锁的顺序来获取锁
    看代码的实现:

        private Lock lockFair = new ReentrantLock(true);//true 设置公平锁 false 不设置
    
        public void fairLock() {
            try {
                lockFair.lock();
                System.out.println(Thread.currentThread().getName() + ",Request Lock...");
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                lockFair.unlock();
                System.out.println(Thread.currentThread().getName() + ",Release Lock...");
            }
        }
    

    建立线程类,在生成10个线程,调用此方法:

    public class MyRunnable implements Runnable {
        private Count count;
        public MyRunnable(Count count) {
            this.count = count;
        }
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + " running...");
            count.fairLock();
        }
    }
    
            List<Thread> threadList = new ArrayList<>();
            for (int i = 0; i < 5; i++) {
                threadList.add(new Thread(new MyRunnable()));
            }
    
            for (Thread thread1 : threadList) {
                thread1.start();
            }
    

    运行,结果为:

    Thread-0 running...
    Thread-1 running...
    Thread-2 running...
    Thread-0,Request Lock...
    Thread-4 running...
    Thread-3 running...
    Thread-1,Request Lock...
    Thread-0,Release Lock...
    Thread-2,Request Lock...
    Thread-1,Release Lock...
    Thread-4,Request Lock...
    Thread-2,Release Lock...
    Thread-4,Release Lock...
    Thread-3,Request Lock...
    Thread-3,Release Lock...
    

    从结果看,它们是按照请求的顺序,进行锁的申请的。

    ReadWriteLock类的使用

    来看看的源代码:

    public interface ReadWriteLock {
        Lock readLock();
        Lock writeLock();
    }
    

    ReadWriteLock类是一个接口类,里面就实现了两个方法:读锁和写锁。它的具体实现类为ReentrantReadWriteLock。我们用代码进行使用演示:

        private ReadWriteLock lock = new ReentrantReadWriteLock();
        private Lock writeLock = lock.writeLock();
        private Lock readLock = lock.readLock();
    
        public void write(String name) {
            writeLock.lock();
            try {
                for (int i = 0; i < 3; i++) {
                    y++;
                    System.out.println(name + "-->CurrThread:" + Thread.currentThread().getName() + " y=" + y);
                }
            } catch (Exception e) {
                e.printStackTrace();
                System.out.println("Abnormal exit of write method...");
            } finally {
                System.out.println(Thread.currentThread().getName() + ",Release Write Lock ...");
                writeLock.unlock();
            }
        }
    
        public void read(String name) {
            readLock.lock();
            try {
                for (int i = 0; i < 3; i++) {
                    System.out.println(name + "-->CurrThread:" + Thread.currentThread().getName() + " output=" + i);
                }
            } catch (Exception e) {
                e.printStackTrace();
                System.out.println("Abnormal exit of read method...");
            } finally {
                System.out.println(Thread.currentThread().getName() + ",Release Read Lock ...");
                readLock.unlock();
            }
        }
    

    上面的两个方法,一个加的是读锁,一个加的是写锁。
    生成两个线程,在传入同一实例对象

    • 两个线程都调用read方法,运行:
    Thread-0,Request Read Lock ...
    Count Instance 1:-->CurrThread:Thread-0 output=0
    Count Instance 1:-->CurrThread:Thread-0 output=1
    Thread-1,Request Read Lock ...
    Count Instance 1:-->CurrThread:Thread-0 output=2
    Count Instance 1:-->CurrThread:Thread-1 output=0
    Thread-0,Release Read Lock ...
    Count Instance 1:-->CurrThread:Thread-1 output=1
    Count Instance 1:-->CurrThread:Thread-1 output=2
    Thread-1,Release Read Lock ...
    

    从结果看,可以多线程一起读共享数据。

    • 一个线程调用方法read,一个线程调用方法write,运行:
    Thread-0,Request Write Lock ...
    TempRunnable->WriteLock-->CurrThread:Thread-0 y=1
    TempRunnable->WriteLock-->CurrThread:Thread-0 y=2
    TempRunnable->WriteLock-->CurrThread:Thread-0 y=3
    Thread-0,Release Write Lock ...
    Thread-1,Request Read Lock ...
    Count Instance 1:-->CurrThread:Thread-1 output=0
    Count Instance 1:-->CurrThread:Thread-1 output=1
    Count Instance 1:-->CurrThread:Thread-1 output=2
    Thread-1,Release Read Lock ...
    
    Thread-0,Request Read Lock ...
    Count Instance 1:-->CurrThread:Thread-0 output=0
    Count Instance 1:-->CurrThread:Thread-0 output=1
    Count Instance 1:-->CurrThread:Thread-0 output=2
    Thread-0,Release Read Lock ...
    Thread-1,Request Write Lock ...
    TempRunnable->WriteLock-->CurrThread:Thread-1 y=1
    TempRunnable->WriteLock-->CurrThread:Thread-1 y=2
    TempRunnable->WriteLock-->CurrThread:Thread-1 y=3
    Thread-1,Release Write Lock ...
    

    从结果看,不管是先调用读还是写,都是一个获取锁执行完成释放锁后,另一个线程才执行。它们之间是互斥的。

    • 两个线程都调用write方法,运行:
    Thread-1,Request Write Lock ...
    TempRunnable->WriteLock-->CurrThread:Thread-1 y=1
    TempRunnable->WriteLock-->CurrThread:Thread-1 y=2
    TempRunnable->WriteLock-->CurrThread:Thread-1 y=3
    Thread-1,Release Write Lock ...
    Thread-0,Request Write Lock ...
    TempRunnable->WriteLock-->CurrThread:Thread-0 y=4
    TempRunnable->WriteLock-->CurrThread:Thread-0 y=5
    TempRunnable->WriteLock-->CurrThread:Thread-0 y=6
    Thread-0,Release Write Lock ...
    

    从结果看,它们也是互斥的,只有一个线程执行完释放锁之后,另一个线程才会执行。

    读锁和写锁,除了读读外,读写,写读,写写之间都是互斥的。
    condition类的使用

    condition类,是Java提供的等待/通知类。看看其源码:

    public interface Condition {
        //使当前线程加入 await() 等待队列中,并释放当锁,当其他线程调用signal()会重新请求锁。与Object.wait()类似。
        void await() throws InterruptedException;
        //调用该方法的前提是,当前线程已经成功获得与该条件对象绑定的重入锁,否则调用该方法时会抛出IllegalMonitorStateException。
        //调用该方法后,结束等待的唯一方法是其它线程调用该条件对象的signal()或signalALL()方法。等待过程中如果当前线程被中断,该方法仍然会继续等待,同时保留该线程的中断状态。
        void awaitUninterruptibly();
        // 调用该方法的前提是,当前线程已经成功获得与该条件对象绑定的重入锁,否则调用该方法时会抛出IllegalMonitorStateException。
        //nanosTimeout指定该方法等待信号的的最大时间(单位为纳秒)。若指定时间内收到signal()或signalALL()则返回nanosTimeout减去已经等待的时间;
        //若指定时间内有其它线程中断该线程,则抛出InterruptedException并清除当前线程的打断状态;若指定时间内未收到通知,则返回0或负数。
        long awaitNanos(long var1) throws InterruptedException;
        //与await()基本一致,唯一不同点在于,指定时间之内没有收到signal()或signalALL()信号或者线程中断时该方法会返回false;其它情况返回true。
        boolean await(long var1, TimeUnit var3) throws InterruptedException;
       //适用条件与行为与awaitNanos(long nanosTimeout)完全一样,唯一不同点在于它不是等待指定时间,而是等待由参数指定的某一时刻。
        boolean awaitUntil(Date var1) throws InterruptedException;
        //唤醒一个在 await()等待队列中的线程。与Object.notify()相似
        void signal();
       //唤醒 await()等待队列中所有的线程。与object.notifyAll()相似
        void signalAll();
    }
    

    使用await()signal()方法,来进行一个简单的实例:

    private Lock lockTry = new ReentrantLock();
    private Condition condition = lockTry.newCondition();
    
        public void signal(String name) {
            lockTry.lock();
            System.out.println(name+ "signal:"+ Thread.currentThread().getName() + ",Request Lock...");
            try {
                condition.signal();
                System.out.println(name + "-->CurrThread: Wait for the Thread to wake up...");
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                lockTry.unlock();
                System.out.println(Thread.currentThread().getName() + ",Release Lock...");
            }
        }
    
        public void wait(String name) {
            lockTry.lock();
            System.out.println(name+ "wait:"+Thread.currentThread().getName() + ",Request Lock...");
            try {
                for (int i = 0; i < 5; i++) {
                    y++;
                    if (i == 2) {
                        System.out.println(name + "-->CurrThread:" + Thread.currentThread().getName() + " is waiting...");
                        condition.await();
                    }
                    System.out.println(name + "-->CurrThread:" + Thread.currentThread().getName() + " y=" + y);
                }
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                lockTry.unlock();
                System.out.println(Thread.currentThread().getName() + ",Release Lock...");
            }
        }
    

    建立两个线程,分别调用这两个方法;注意线程在调用signal方法时,让线程睡眠几秒,这样在输出结果是就能看出很明显的结果。
    运行,结果为:

    TempRunnable->Waitwait:Thread-0,Request Lock...
    TempRunnable->Wait-->CurrThread:Thread-0 y=1
    TempRunnable->Wait-->CurrThread:Thread-0 y=2
    TempRunnable->Wait-->CurrThread:Thread-0 is waiting...
    Count Instance 1:signal:Thread-1,Request Lock...
    Count Instance 1:-->CurrThread: Wait for the Thread to wake up...
    Thread-1,Release Lock...
    TempRunnable->Wait-->CurrThread:Thread-0 y=3
    TempRunnable->Wait-->CurrThread:Thread-0 y=4
    TempRunnable->Wait-->CurrThread:Thread-0 y=5
    Thread-0,Release Lock...
    

    上一篇:Synchronized的使用

    相关文章

      网友评论

          本文标题:Lock的使用

          本文链接:https://www.haomeiwen.com/subject/fkmwbftx.html