美文网首页
单细胞数据挖掘实战:文献复现(五)细胞亚群并可视化

单细胞数据挖掘实战:文献复现(五)细胞亚群并可视化

作者: 生信开荒牛 | 来源:发表于2022-08-13 11:33 被阅读0次

    单细胞数据挖掘实战:文献复现(一)批量读取数据

    单细胞数据挖掘实战:文献复现(二)批量创建Seurat对象及质控

    单细胞数据挖掘实战:文献复现(三)降维、聚类和细胞注释

    单细胞数据挖掘实战:文献复现(四)细胞比例饼图

    复现Figure 2a左边那张图

    一、加载R包

    if(T){
      if(!require(BiocManager))install.packages("BiocManager")
      if(!require(Seurat))install.packages("Seurat")
      if(!require(Matrix))install.packages("Matrix")
      if(!require(ggplot2))install.packages("ggplot2")
      if(!require(cowplot))install.packages("cowplot")
      if(!require(magrittr))install.packages("magrittr")
      if(!require(dplyr))install.packages("dplyr")
      if(!require(purrr))install.packages("purrr")
      if(!require(ggrepel))install.packages("ggrepel")
      if(!require(ggpubr))install.packages("ggpubr")
    }
    

    二、数据处理

    #挑选MG, Mo/MΦ,BAM三个细胞簇
    Idents(sex_condition_objects[[1]]) <- sex_condition_objects[[1]]@meta.data$cell_type_selection
    table(Idents(sex_condition_objects[[1]]))
    #Microglia       BAM 
    #     9454       500
    clusters_taken_1 <- subset(sex_condition_objects[[1]], idents = c("Microglia","BAM"))
    
    Idents(sex_condition_objects[[2]]) <- sex_condition_objects[[2]]@meta.data$cell_type_selection
    table(Idents(sex_condition_objects[[2]]))
    #Macrophages               Microglia         BAM 
    #       2131        1658        6981         375
    clusters_taken_2 <- subset(sex_condition_objects[[2]], idents = c("Microglia","Macrophages","BAM"))
    
    Idents(sex_condition_objects[[3]]) <- sex_condition_objects[[3]]@meta.data$cell_type_selection
    table(Idents(sex_condition_objects[[3]]))
    #Microglia       BAM           
    #     9078       619       362
    clusters_taken_3 <- subset(sex_condition_objects[[3]], idents = c("Microglia","BAM"))
    
    Idents(sex_condition_objects[[4]]) <- sex_condition_objects[[4]]@meta.data$cell_type_selection
    table(Idents(sex_condition_objects[[4]]))
    #Macrophages   Microglia                     BAM 
    #       2301        6071         527         344 
    clusters_taken_4 <- subset(sex_condition_objects[[4]], idents = c("Microglia","Macrophages","BAM"))
    
    clusters_taken_list <-  c(clusters_taken_1,clusters_taken_2,clusters_taken_3,
                              clusters_taken_4)  
    names(clusters_taken_list) <- names(sex_condition_objects)
    
    
    # Normalize 
    clusters_objects <- lapply(clusters_taken_list, function(cluster_sample_object) {
      cluster_sample_object <- ScaleData(cluster_sample_object)
      cluster_sample_object
    })
    

    三、画图

    # f_ctrl
    DimPlot(clusters_taken_list[[1]],cols = c("#0cd2ae","#52b0e6"),  group.by = "cell_type_selection")
    # f_tumor
    DimPlot(clusters_taken_list[[2]], cols = c("#0cd2ae","#fcc000","#52b0e6"),group.by = "cell_type_selection")
    # m_ctrl
    DimPlot(clusters_taken_list[[3]], cols = c("#0cd2ae","#52b0e6"),group.by = "cell_type_selection")
    # m_tumor
    DimPlot(clusters_taken_list[[4]], cols = c("#0cd2ae","#fcc000","#52b0e6"),group.by = "cell_type_selection")
    

    将四幅图简单合并一下并与文献原图比较

    cell_type.png

    往期单细胞数据挖掘实战

    单细胞数据挖掘实战:文献复现(一)批量读取数据

    单细胞数据挖掘实战:文献复现(二)批量创建Seurat对象及质控

    单细胞数据挖掘实战:文献复现(三)降维、聚类和细胞注释

    单细胞数据挖掘实战:文献复现(四)细胞比例饼图

    相关文章

      网友评论

          本文标题:单细胞数据挖掘实战:文献复现(五)细胞亚群并可视化

          本文链接:https://www.haomeiwen.com/subject/fldqgrtx.html