scikit-learning小试牛刀

作者: 阿发贝塔伽马 | 来源:发表于2017-07-06 20:37 被阅读33次

    简单使用下sklearning

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets
    from sklearn.cross_validation import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import Perceptron
    import matplotlib.pyplot as plt
    from sklearn.metrics import accuracy_score
    from matplotlib.colors import ListedColormap
    
    iris = datasets.load_iris()
    X = iris.data[:, [2, 3]]
    y = iris.target
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
    
    # 标准化
    sc = StandardScaler()
    # 按照train样本标准化,
    sc.fit(X_train)
    X_train_std = sc.transform(X_train)
    X_test_std = sc.transform(X_test)
    '''sc.scale_标准差, sc.mean_平均值, sc.var_方差'''
    
    # 创建分类器类,设置参数
    ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)
    
    # 使用训练数据训练
    ppn.fit(X_train_std, y_train)
    
    # 预测
    y_pred = ppn.predict(X_test_std)
    
    print('Misclassified samples: %d' % (y_test != y_pred).sum())
    print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
    
    x1_min, x1_max = X_train_std[:, 0].min() - 1, X_train_std[:, 0].max() + 1
    x2_min, x2_max = X_train_std[:, 1].min() - 1, X_train_std[:, 1].max() + 1
    
    resolution = 0.01
    # xx1 X轴,每一个横都是x的分布,所以每一列元素一样,xx2 y轴 每一列y分布,所以每一横元素一样
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),np.arange(x2_min, x2_max, resolution))
    
    # .ravel() 函数是将多维数组降位一维,注意是原数组的视图,转置之后成为两列元素
    z = ppn.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    '''
    contourf画登高线函数要求 *X* and *Y* must both be 2-D with the same shape as *Z*, or they
        must both be 1-D such that ``len(X)`` is the number of columns in
        *Z* and ``len(Y)`` is the number of rows in *Z*.
    '''
    # z形状要做调整
    z = z.reshape(xx1.shape)
    
    # 填充等高线的颜色, 8是等高线分为几部分
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    
    for i, value in enumerate(np.unique(y)):
        temp = X_train_std[np.where(y_train==value)]
        plt.scatter(x=temp[:,0],y=temp[:,1], marker=markers[value],s=69, c=colors[value], label=value)
    
    
    plt.scatter(x=X_test_std[:, 0],y=X_test_std[:,1], marker= 'o',s=69, c='none', edgecolors='r', label='test test')
    
    
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())
    plt.xlabel('petal length [standardized]')
    plt.ylabel('petal width [standardized]')
    plt.contourf(xx1, xx2, z, len(np.unique(y)), alpha = 0.4, cmap = cmap)
    plt.legend(loc='upper left')
    plt.show()
    

    相关文章

      网友评论

        本文标题:scikit-learning小试牛刀

        本文链接:https://www.haomeiwen.com/subject/fniucxtx.html