美文网首页
【挖掘模型】:R语言-决策树观察汽车信用贷款违约模式

【挖掘模型】:R语言-决策树观察汽车信用贷款违约模式

作者: dataheart | 来源:发表于2017-05-22 21:44 被阅读336次

    背景:

    目前有一批汽车信用贷款用户违约数据(客户属性 + 账号属性 + 消费行为 +还款行为),市场部门想根据这些数据建立决策树模型从而观察违约用户的违约模式,进而调整业务。

    数据源:

    data.csv(一份汽车贷款违约数据)
    样本量:7193

    24个观察指标

    建模方法: 决策树-C5.0

    建模结果:

    违约模式

    代码

    > setwd("C:\\Users\\Administrator\\Desktop\\重新跑模型\\data\\")
    > accepts<-read.csv("accepts.csv")
    > accepts$bad_ind<-as.factor(accepts$bad_ind)
    > names(accepts)
     [1] "application_id" "account_number" "bad_ind"        "vehicle_year"   "vehicle_make"   "bankruptcy_ind"
     [7] "tot_derog"      "tot_tr"         "age_oldest_tr"  "tot_open_tr"    "tot_rev_tr"     "tot_rev_debt"  
    [13] "tot_rev_line"   "rev_util"       "fico_score"     "purch_price"    "msrp"           "down_pyt"      
    [19] "loan_term"      "loan_amt"       "ltv"            "tot_income"     "veh_mileage"    "used_ind"      
    > accepts=accepts[,c(3,7:24)]
    > #根据业务理解生成更有意义的衍生变量,不过这些变量都是临时的,因为没有经过数据清洗,此处仅作一个示例
    > #accepts$lti_temp=accepts$loan_amt/accepts$tot_income
    > 
    > set.seed(10)
    > select<-sample(1:nrow(accepts),length(accepts$bad_ind)*0.7)
    > train=accepts[select,]
    > test=accepts[-select,]
    > summary(train$bad_ind)
       0    1 
    3233  858 
    > ###################################
    > ## Section 1: C50算法
    > ###################################
    > train<-na.omit(train)
    > library(C50)
    > #请注意,R中的C50包比较新,存在一些问题,比如遇到缺失值、字符类型变量会报错“c50 code called exit with value 1”
    > ##建模
    > tc<-C5.0Control(subset =F,CF=0.25,winnow=F,noGlobalPruning=F,minCases =20)
    > model <- C5.0(bad_ind ~.,data=train,rules=F,control =tc)
    > summary( model )
    
    Call:
    C5.0.formula(formula = bad_ind ~ ., data = train, rules = F, control = tc)
    
    
    C5.0 [Release 2.07 GPL Edition]     Mon May 22 21:35:14 2017
    -------------------------------
    
    Class specified by attribute `outcome'
    
    Read 3001 cases (19 attributes) from undefined.data
    
    Decision tree:
    
    fico_score > 661: 0 (2161/262)
    fico_score <= 661:
    :...tot_tr > 13:
        :...ltv <= 83: 0 (49/4)
        :   ltv > 83:
        :   :...fico_score <= 588: 1 (52/20)
        :       fico_score > 588: 0 (411/125)
        tot_tr <= 13:
        :...rev_util > 116: 1 (26/5)
            rev_util <= 116:
            :...used_ind > 0: 0 (181/78)
                used_ind <= 0:
                :...purch_price <= 25000: 1 (92/40)
                    purch_price > 25000: 0 (29/5)
    
    
    Evaluation on training data (3001 cases):
    
            Decision Tree   
          ----------------  
          Size      Errors  
    
             8  539(18.0%)   <<
    
    
           (a)   (b)    <-classified as
          ----  ----
          2357    65    (a): class 0
           474   105    (b): class 1
    
    
        Attribute usage:
    
        100.00% fico_score
         27.99% tot_tr
         17.06% ltv
         10.93% rev_util
         10.06% used_ind
          4.03% purch_price
    
    
    Time: 0.0 secs
    
    > #图形展示
    > plot(model)
    > C5imp(model)
                  Overall
    fico_score     100.00
    tot_tr          27.99
    ltv             17.06
    rev_util        10.93
    used_ind        10.06
    purch_price      4.03
    tot_derog        0.00
    age_oldest_tr    0.00
    tot_open_tr      0.00
    tot_rev_tr       0.00
    tot_rev_debt     0.00
    tot_rev_line     0.00
    msrp             0.00
    down_pyt         0.00
    loan_term        0.00
    loan_amt         0.00
    tot_income       0.00
    veh_mileage      0.00
    > #生成规则
    > rule<- C5.0(bad_ind ~.,data=train,rules=T,control =tc)
    > summary( rule )
    
    Call:
    C5.0.formula(formula = bad_ind ~ ., data = train, rules = T, control = tc)
    
    
    C5.0 [Release 2.07 GPL Edition]     Mon May 22 21:35:15 2017
    -------------------------------
    
    Class specified by attribute `outcome'
    
    Read 3001 cases (19 attributes) from undefined.data
    
    Rules:
    
    Rule 1: (2161/262, lift 1.1)
        fico_score > 661
        ->  class 0  [0.878]
    
    Rule 2: (2015/301, lift 1.1)
        tot_tr > 13
        ->  class 0  [0.850]
    
    Rule 3: (2879/531, lift 1.0)
        rev_util <= 116
        ->  class 0  [0.815]
    
    Rule 4: (26/5, lift 4.1)
        tot_tr <= 13
        rev_util > 116
        fico_score <= 661
        ->  class 1  [0.786]
    
    Default class: 0
    
    
    Evaluation on training data (3001 cases):
    
                Rules     
          ----------------
            No      Errors
    
             4  563(18.8%)   <<
    
    
           (a)   (b)    <-classified as
          ----  ----
          2417     5    (a): class 0
           558    21    (b): class 1
    
    
        Attribute usage:
    
         96.80% rev_util
         72.88% fico_score
         68.01% tot_tr
    
    
    Time: 0.1 secs
    

    参考资料:CDA《信用风险建模》微专业

    相关文章

      网友评论

          本文标题:【挖掘模型】:R语言-决策树观察汽车信用贷款违约模式

          本文链接:https://www.haomeiwen.com/subject/fovixxtx.html