美文网首页
Fundamentals of Probability

Fundamentals of Probability

作者: asuka_19d5 | 来源:发表于2018-10-17 06:02 被阅读0次
    Conditional Probability:
    • Given B is ture, probability of A is true: P(A|B)
    • Chain Rule:
      P(A, B): Both A and B are true.
      • P(A, B) = P(A|B) * P(B)
      • P(A, B, C) = P(A| B, C) * P(B| C) * P(C)
    Bayes' theorem:

    P( B|A) = \frac{P(B) P(A|B)}{P(A)}

    P(B): prior probobility.
    We use it to test the probability firstly. Whether this method is better or worse depends.

    P( B|A_1, A_2) = \frac{P(B|A_1) P(A_2|B, A_1)P(A_1)}{P(A_1, A_2)}

    (add A_1 to the end)
    P(B| A_1): prior probability

    Naive Bayes Classifier:
    • Question: how to calculate P(C|F1, F2, ..., Fn)?
    • Example: Fraud User Detection
      Prior information: Real User C0 = 77%; Fake User C1 = 23%
      Features:
      F1: Number of blogs -> s, m, l
      F2: Number of friends -> s, m, l
      F3: Real Avator or Not
      • Lemma:

        P(C| F1, F2, ..., Fn) = P(F1|C) * P(F2|C) * ... P(Fn|C) * P(C)/Z

        P(C| F1, F2, ..., Fn)
        = P(F1, F2, ..., Fn|C)*P(C)/P(F1, F2, ..., Fn)
        = P(F1, F2, ..., Fn|C)*P(C)/Z
        Because F1-Fn are all independent:
        P(F1, F2, ..., Fn|C) = P(F1|C) * P(F2|C) * ... P(Fn|C)

      • Complete Fraud User Detection:
        P(C0| F1 = S, F2 = M, F3 = R)
        = P(C0) *P(F1 = S| C0) *P(F2 = M| C0) *P(F3 = R| C0)/Z
        = 0.0623 / Z

    • Conclusion: to calculate P(C|F1, F2, ..., Fn), we first calculate P(F1, F2, ...,Fn, C) to get the prior probability.

    相关文章

      网友评论

          本文标题:Fundamentals of Probability

          本文链接:https://www.haomeiwen.com/subject/ftflzftx.html